The Thucydides Reference Manual

John Ferguson Smart

The Thucydides Reference Manual
John Ferguson Smart

Table of Contents

(@0070)7/ [0 | o | PSRRI Vi
1. IntroduCing TRUCYTIAESc..ooiuiie et e e 1
2. Basic concepts of Acceptance and RegresSSioN TESHINGcccveveererirreereeiesee e eee e see e 2
3. Getting started With THUCYAITEScc.eoiiieee e e e 5
3.1. Creating a new ThUCYdidES PIrOJECTocueeiieeieiieie e 5
3.2. Setting custom web driver Capabilitiesooeiiiiieieee s 9
4. Writing Acceptance TestS With ThUCYAITESoieeiieeeee e 10
4.1. Organizing YOUr FEQUITEIMENTScc.eiiueieereeerreesteeeesseeseeeseesseessessessseessessesssesssessesssessseseens 10
5. DefiNiNG NIGN-1EVE] TESESeoieeeeiee ettt et saeeeesneenneas 12
5.1. Defining high-level teStS iN aSyhccooiiieiiie e e 12
5.2. Defining high-level testS in JUNIT ... s 16
5.3. AddiNg tagS t0 TESE CASES ...c.veieiiieeiieie sttt ettt st aeenae e e sreeeeeneens 19
5.4. Running Thucydides in different DrowSsers ..o 21
5.5. Forcing the use of a particular driver in atest Case Of teStcocveveveereeii e 22
6. Writing Acceptance TestS With JBENAVEcooiriiiieieeeee e 25
6.1. JBehave and THUCYAITESccoiieeee ettt 25
6.2. Working with JBehave and ThUuCydidescocooiieiieie s 26
6.3. Setting up your project and organizing your directory StruCtureccccveeceeveeeiieecieeenne. 26
6.4. JBENAVE MaVEN ATCHELYE . .ooueiieeiieeie ettt st e et eneesreesaeeneens 35
6.5. Running all testsin a single browser Window ... 35
7. Implementing SEEP LIDIaITESooei ettt sttt sae e e e e sneenne s 36
7.1. Creating StEP LIDraries ... 36
8. DEfINING Page ODJECESc.eeiieeiiiieie ettt sa e b et e s e be et e saeesbeenseeneenseeneas 37
8.1. Using pages in @ SteP [IDrary ... 38
8.2. OPENING thE PAOEeeeeeeieeiteeie ettt ettt e te st e s aeeeesneesreeseeneesseeneesneenen 39
8.3. Working With Web elemeNnts ..o e 40
8.4. Working with ASYNChron0US PagEScceeiiieiieesieieeee et 43
8.5. EXECULING JAVASCIIPE ...eeteeiieiiesieeiie ettt sttt sttt sttt e st e ae et e e seeseeeneeeneesseeneesneeneas 44
LS SR o o ="o |1 0o I 11 -SSR 44
8.7. Using Fluent MatCher EXPIreESSIONScceieerieeieieesieeeesieesieseeseeesseseesseeseesseesseessesneesneensens 45
8.8. Running several steps using the same page ODJECTcccoverieiieieeie e 51
8.9. Switching t0 ANONEr PAgEeeieeeeee et neeas 51
9. Advanced JIRA INEEGIAIONceoiuieieiierieeie ettt e e e sae e e sseesbeeneesaeesseeneesneensens 53
9.1. JRA INtegration PIUGINSooeeiuieiieiesee ettt sttt s esreeneesneens 53
O.2. REPOIMING ON VEISIONSeeiuieieeiiesieesieeeesteeseeseesseessesseesseessesseessesssesseessesnsesseessesnsessesssessesses 53
0.3. USING JIRA VEISIONScouiiiiiuieiteeiesiee st e e siee st e ee st e sbe e eesseessessesseesbesneesseesseensesseensesneesseenes 54
9.4. Retrieving manual test results from ZePhyr ..o 54
10. SPriNG INEEGIEIIONoceiieieiiieiieeeere et et ree st et et e e beetesseesaeesseeseesteeeesseesseensesneesbesnsesseesseensens 56
11. Thucydides RePOrt CONfIQUIELIONoceeiuieieeieiieeieeee sttt sae e e snee s 58
12. Converting existing xUnit, specFlow and L ettuce test cases into Thucydides report 60
13. Running Thucydides tests from the command [iNeccoveriiieinie e 61
13.1. Providing your own FIrefoX Profile ... 64
14. Integrating With iSSUE traCking SYSIEIMScceiiiiieiieree e 65
14.1. Basic issue tracking INEGIaliONc.coceeieeieriereeieeee e e e se e e ee e sreeee e e seeeneas 65
HEST O L g To N I 0 ToxY o [0 (S0 = o SRR 68
15.1. Writing a Thucydides tags PlUGINoouiiieiieiereereee e e 68
15.2. Bi-directional JRA INEOratiONcccerererreerieeierieesieeee e steseeseessessee e e e eeesseeseesnseans 69

The Thucydides

Reference Manual
16. Managing SCIEENSNOLSccueeiieieeiieeieseesteete s e ste et e s et e e te s e e seeeesse e seeseesaeesseessesseensesnsesreensennnens 76
16.1. Configuring when screenshots are takencccccceieeiiece e 76
16.2. Using annotations to CONtrol SCreENSNOLSccveeeieeiiieie et 76
16.3. Taking screenshots at any arbitrary point during @ StePcevveveiceeviece e 76
16.4. Increasing the Size Of SCreenSNOLSccovviieiiece e 77
16.5. SAVING FAW SCIEENSNOLSeciviiieiieeiieeie ettt te e e e s st e sae et e sreesseennesne e seeneesns 78
16.6. Saving HTML source files for SCreenshotsccvveeieeie e 78
16.7. BlIUrring SENSItIVE SCIEENSNOLScceeivieieiieeiieeieseesieeeesteesteeee s e e steeee e e e ensesneenneeneesneenes 78
17. Managing State DEIWEEN SLEPSccveciiieeieee ettt et esneenneeneeeraens 82
(R D = B A= =S o S 83
18.1. Data-Driven TeStS iN JUNITcoieiieieieieiesie sttt s sresneas 83
18.2. Reporting on data-driven WED tESESccvieiiiiieiieie et sre e sneens 84
18.3. Running data-driven tests in parallel ..o 84
18.4. Data-driven testing USING CSV €Svvciiiieceee et 84
18.5. Using data-driven testing for individual StEPScceccuviieveieieeece e 87
19. Running Thucydides tests in parallel batChes ..o 91
19.1. Test count based DatCh SIrAtEQYccvvevieiieeiieie e 91
20. EXPEriMENtal TEALUIEScceeiieceie ettt et et e s e et e e e e e ne e neennesneennn 92
20.1. Integration With FIUENTLINEUMcoiiiiece et 92
20.2. Shortcut for the element() MEthOccoveeiieii e e 93
20.3. RErYiNg fall@d tESLScccveieeiice ettt nn 9
20.4. Using Step methods to document tESt CASESccveveerieieesiecie e 94
P I U 141 0= g == o [o S 96

List of Figures

2.1. A test report generated DY THUCYAITESc..oouiiiiieiee e 4
5.1. Pending tests are shown with the calendar iCON ..o 13
5.2. Tag types appear on top. Each tag type displays the tag Names.ccocceeeevevenieneeneeee e 20
6.1. A Thucyides project using JBehave can organize the stories in an appropriate directory

S (o1 L1 TP UPRPTI 28
6.2. You can see the requirements that you need to implement n the requirements report 29
6.3. Narrative with asClidoC FOrMEITINGooeerueriiiieie e ee e nreas 30
6.4. You can see the requirements that you need to implement in the requirements report 34
8.1. The results page for the Maven Central SEarch Pageccoooeeereeienieseeree e 45
8.2. Conditional expressions are displayed in the teSt reportsSccoovevereereeie e 49
9.1. Manual test results imported from ZEPNYTc.eoiieiiieeee e e e 55
11.1. Thucydides test reports in the Maven SItecociiiiieiie e e 59
16.1. A lightly blurred SCreenshiorlooooi i 79
16.2. A medium Blurred SCreeNSNOLc.ooiieeeee e 80
16.3. A heavily DIUrred SCrEBNSNOLcoiiiieiieieee ettt neesneens 8l
20.1. HTML formatted text, if passed to a step method will be displayed as shown. This can be

useful for annotating or documenting the tests with helpful information.cccocoieiininieienene 95

Copyright
Copyright © 2011-2014 John Ferguson Smart.

Online version published by Wakaleo Consulting.

Thiswork is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works
3.0 United States license. For more information about this license, see creativecommons.org/licenses/
by-nc-nd/3.0/ug/ [http://creativecommons.org/licenses/by-nc-nd/3.0/us/].

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries.

Eclipse™ is atrademark of the Eclipse Foundation, Inc., in the United States and other countries.
Apache and the Apache feather logo are trademarks of The Apache Software Foundation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Wakaleo Consulting was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Vi

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/
http://creativecommons.org/licenses/by-nc-nd/3.0/us/

Chapter 1. Introducing Thucydides

Thucydides (Thoo-SID-a-dees) is atool designed to make writing automated acceptance and
regression tests easier (Refer to Pt. 3). It provides features that make it easier to organize and
structure your acceptance tests, associating them with the user stories or features that they test. Asthe
tests are executed, Thucydides generates illustrated documentation describing how the application is
used based on the stories described by the tests.

Thucydides provides strong support for automated web tests based on Selenium 2 (http://
docs.seleniumhq.org/projects/webdriver/), though it can also be used effectively for non-web tests

(?).

Thucydides was a Greek historian (http://en.wikipedia.org/wiki/Thucydides) known for his astute
analysis skills who rigorously recorded events that he witnessed and participated in himself. In the
same way, the Thucydides framework observes and analyzes your acceptance tests, and records a
detailed account of their execution.

http://docs.seleniumhq.org/projects/webdriver/
http://docs.seleniumhq.org/projects/webdriver/
http://en.wikipedia.org/wiki/Thucydides

Chapter 2. Basic concepts of Acceptance
and Regression Testing

To get the most out of Thucydides, it is useful to understand some of the basic principles behind
Acceptance Test Driven Development. Thucydidesis commonly used for both Automated A cceptance
Tests and Regression tests, and the principles discussed here apply, with minor variations, to both.

Acceptance Test Driven Development, or ATDD, is an advanced form of Test Driven Development
(TDD) in which automated acceptance criteria— defined in collaboration with users — drive and
focus the devel opment process. This helps ensure that everyone understands what features are under
development.

One of the important things about ATDD isthe idea of " Specification by Example". Specification by
Example refersto the use of relatively concrete examples to illustrate how a system should work, as
opposed to more formally written specifications.

Let’slook at an example. In many projects, requirements are expressed as simple stories along the
following lines:

In order to earn noney to buy a new car
As a car owner
| want to sell nmy old car online

If we were implementing an online car sales web site that hel ps people achieve this goal, we would
typically define a set of acceptance criteriato flesh out this story. For example, we might have the
following criteriain our list of acceptance criteria:

» Car owner can place a standard car ad online

» Car owner can place a premium car ad online

» Car ad should display the brand, model and year of the car

and so on.

A tester planning the tests for these acceptance criteria might draw up atest plan outlining of the way
she expects to test these criteria. For the first criteria, she might start off with a high-level plan like the

following:

» (o to car ads section and choose to post a standard car ad

Enter car details

Choose publication options

Preview ad

Enter payment details

See ad confirmation

Basic concepts of Acceptance
and Regression Testing

Each of these steps might need to be broken down into smaller steps.
» Enter car details
» Enter car make, model and year

» Select options

Add photos

 Enter description
These steps are often fleshed out with more concrete details:
 Enter car details

» Create an ad for a 2006 Mitsubishi Pgjero

» Add Air Conditioning and CD Player

» Add three photos

» Enter adescription
For our purposes, Regression Tests can be defined as end-to-end tests that ensure that an application
behaves as expected, and that it continues to behave as expected in future releases. Whereas ATDD
Acceptance Tests are defined very early on in the piece, before devel opment starts, Regression Tests

involve an existing system. Other than that, the steps involved in defining and automating the tests are
very similar.

Now different project stakeholders will be interested in different levels of detail. Some, such as
project managers and management in general, will be interested only in which application features
work, and which need to be done. Others, such as business analysts and QA, will be interested in the
details of how each acceptance scenario isimplemented, possible down to the screen level.

Thucydides helps you structure your automated acceptance tests into steps and sub-steps like the
ones illustrated above. This tends to make the tests clearer, more flexible and easier to maintain. In
addition, when the tests are executed, Thucydides produces illustrated, narrative-style reports like the
onein Figure 2.1, “A test report generated by Thucydides’.

Basic concepts of Acceptance
and Regression Testing

Figure2.1. A test report generated by Thucydides

! thucydides

Home / Features / Stories/Place a linar basic property ad

Features Stories

.) i 162.94
@ Placing a liner basic property ad it
Steps Screenshot Outcome Duration
== Logs on with user: 63.306
@ raywhitel, password1 SUEEES seconds
5.535
@ Chooses to place a new ad SUCCESS e
== Selects ad category and style: 31.204
@ Houses, Liner Basic SOLCESS seconds
@) Selects ad category: Houses S SUCCESS gio12
gory: seconds
= L) Berane 29.994
&) Selects ad style: Liner Basic SUCCESS e
o z 0.577
@ Notes publication name and date SUCCESS e,
. = 5.731
@ Presses continue SUCCESS seconds
== Selects property at: 44.161
@ 4 Skew street, Sherwood, 4075 SOLCESS seconds
@) Enter street address: 4 Skew street SUCCESS T
. seconds
= Enter suburb: 40.444
@ Sherwood, 4075 SUCCESS seconds

When it comes to implementing the tests themselves, Thucydides also provides many features

that make it easier, faster and cleaner to write clear, maintainable tests. Thisis particularly true

for automated web tests using Selenium 2, but Thucydides also caters for non-web tests as well.
Thucydides currently works well with JUnit and easyb - integration with other BDD frameworksisin
progress.

Chapter 3. Getting started with
Thucydides

3.1. Creating a new Thucydides project

The easiest way to start a new Thucydides project is to use the Maven archetype. Three archetypes
are currently available: one for using Thucydides with JUnit, another if you also want to write your
acceptance tests (or a part of them) using easyb [http://www.easyb.org/], and finally one moreto help
you write acceptance tests in jBehave. In this section, we will create a new Thucydides project using
the Thucydides archetype, and go through the essential features of this project.

From the command line, you can run mvn ar chetype: gener ate and then select the
net.thucydides.thucydides-easyb-ar chetype archetype from the proposed list of archetypes. Or you
can use your favorite IDE to generate a new Maven project using an archetype.

$ nvn archet ype: generate

Def i ne value for property 'groupld': : com myconpany
Define value for property "artifactld : : webtests
Define value for property 'version': 1.0-SNAPSHOT:
Def i ne val ue for property 'package': com myconpany:

Confirm properties configuration:
groupl d: com myconpany
artifactld: webtests
versi on: 1. 0- SNAPSHOT
package: com myconpany

Y. ¢

[INFQ Total tine: 2:33.290s
[INFQ Finished at: Fri Oct 28 07:20: 41 NzZDT 2011
[INFQ Final Menory: 7M 81M

Thiswill create asimple Thucydides project, complete with a Page Object, a Step library and two
test cases, one using JUnit, and one using easyb. The actual tests run against the online dictionary at
Wiktionary.org. Before going any further, take the project for a spin. First, however, you will need to
add the net . t hucydi des. maven. pl ugi ns to your plugin groupsin your set ti ngs. xn file:

<settings>
<pl ugi nG oups>
<pl ugi nGr oup>net . t hucydi des. maven. pl ugi ns</ pl ugi nGr oup>
<) pI ugi nG oups>
</ set tings>
Thiswill let you invoke the Maven thucydides plugin from the command line in the short-hand form
shown here. Now go into the generated project directory, run the tests and generate the reports:

$ nvn test thucydides: aggregate

http://www.easyb.org/
http://www.easyb.org/

Getting started with Thucydides

This should run some web tests and generate areport int ar get / si t e/ t hucydi des directory (open
thei ndex. htm file).

If you drill down into the individual test reports, you will see an illustrated narrative for each test
similar to the one shown in Figure 2.1, “A test report generated by Thucydides”

Now for the details. the project directory structure is shown here:

+ src
+ main
+ java
+ com nyconpany. pages
- HonePage. j ava
+ test

+ java
+ com nyconpany. pages
+ requirenments
- Application.java
+ steps
- EndUser St eps. j ava
- LookupADefinitionStoryTest.java

+ stories
+ com nyconpany
- LookupADefinition.story

This project is designed to provide a starting point for your Thucydides acceptance tests, and to
illustrate some of the basic features. The tests come in two flavors: easyb and JUnit. easyb isa
Groovy-based BDD (Behaviour Driven Development) library which works well for this kind of test.
The sample easyb story can be found in the LookupADef i ni ti on. st ory file, and looks something
likethis:

usi ng "thucydi des"

t hucydi des. uses_default _base url "http://en.w ktionary. org/w ki /W ktionary: Mai n_Page"
t hucydi des. uses_st eps_from EndUser St eps
t hucydi des. tests_story Sear chByKeywor d

scenario "Looking up the definition of 'apple' ", {
given "the user is on the Wkionary hone page", {
end_user.is_the_home_page()

}

when "the end user | ooks up the definition of the word 'apple' ", {
end_user. | ooks_for "apple"

}

then "they should see the definition of 'apple", {
end_user. shoul d_see_definition_containing wrds "A common, round fruit"

}
}

A cursory glance at this story will show that it relates a user looking up the definition of the word
apple. However only the “what” is expressed at this level —the details are hidden inside the test steps
and, further down, inside page objects.

If you prefer pure Javatests, the JUnit equivalent can be found in the
LookupADef i ni ti onStoryTest . j ava file:

Getting started with Thucydides

@t ory(Appl i cati on. Sear ch. Sear chByKeywor d. cl ass)
@unW t h(Thucydi desRunner . cl ass)
public class LookupADefinitionStoryTest {

@mnaged(uni queSessi on = true)
public WebDriver webdriver;

@mnagedPages(defaul tUl = "http://en.w ktionary. org/w ki/Wktionary: Mai n_Page")
publ i c Pages pages;

@5t eps
publ i c EndUser St eps endUser;

@ ssue("#WKI - 1")

@rest
public void | ooking up the definition_of apple _shoul d display the _correspondi ng_arti

endUser.is_the hone_page();
endUser . | ooks _for("apple");
endUser . shoul d_see_definition_containi ng words("A comon, round fruit");

}

Asyou can see, thisis alittle more technical but still very high level.

The step libraries contain the implementation of each of the steps used in the high-level tests. For
complex tests, these steps can in turn call other steps. The step library used in this example can be
found in EndUser St eps. j ava:

public class EndUser St eps extends Scenari oSteps {

publ i ¢ EndUser St eps(Pages pages) {
super (pages) ;

}

@t ep

public void searches by keyword(String keyword) {
ent er s(keyword) ;
perforns_search();

}
@t ep
public void enters(String keyword) {
onHonePage() . ent er _keywor ds(keywor d) ;
@t ep

public void perforns_search() {
onHonePage() . starts_search();

}

privat e HonePage onHonePage() {
return get Pages().current PageAt (HonePage. cl ass) ;

}
@t ep

public void should see article with title(String title) {
assert That (onHonePage().getTitle(), is(title));

}

Getting started with Thucydides

@t ep

public void is_on_the_ w ki pedi a_hone_page() {
onHonePage() . open() ;

}

}

Page Objects are away of encapsulating the implementation details about a particular page. Selenium
2 has particularly good support for page objects, and Thucydides leverages this. The sample page
object can be found in the HomePage.java class:

@efaul tUl ("http://en.w ktionary. org/w ki /W ktionary: Mai n_Page")
public class SearchPage extends Pagebject {

@i ndBy(nane="search")
private WebEl ement searchl nput;

@i ndBy(name="go")
private WebEl ement searchButton

publ i c SearchPage(WebDriver driver) {
super (driver);

}

public void enter_keywords(String keyword) {
sear chl nput . sendKeys(keywor d) ;

}

public void starts_search() {
searchButton. click();
}

public List<String> getDefinitions() {
WebEl ement definitionList = getDriver().findEl ement(By.tagNane("ol"));
Li st <WebEl enent > results = definitionList.findEl ements(By.tagNane("li"));
return convert(results, new ExtractDefinition());

}

class ExtractDefinition inplenments Converter<WbEl enent, String> {
public String convert (WbEl enent fron) ({
return from get Text ();

}
}

The final piecein the puzzleisthe Appl i cati on. j ava class, which isaway of representing the
structure of your requirements in Javaform, so that your easyb and JUnit tests can be mapped back to
the requirements they are testing:

public class Application {

@Feat ure

public class Search {
public class SearchByKeyword {}
public class Sear chByAni mal Rel at edkeyword {}
public class SearchByFoodRel at edkeyword {}
public class SearchByMil ti pl eKeywords {}
public class Sear chFor Quot e{}

Getting started with Thucydides

@reat ure
public class Backend {
public class ProcessSal es {}
public class ProcessSubscriptions {}

}
@reat ure
public class Contribute {

public class AddNewArticle {}
public class EditExistingArticle {}

}
Thisiswhat enables Thucydides to generate the aggregate reports about features and stories.

In the following sections, we will look at different aspects of writing automated tests with Thucydides
in more detail.

3.2. Setting custom web driver capabilities

Y ou can set custom web driver capabilities by passing a semi-colon separated list of capabilitiesin the
property t hucydi des. dri ver. capabi | i ti es. For example,

"bui | d: bui | d-1234; max-duration: 300; single-w ndow true; tags:[tagl,tag2,tag3]"

Chapter 4. Writing Acceptance Tests with
Thucydides

In this section, we look at the things you need to know to write your acceptance or regression tests
using Thucydides in more detail. We will also outline a general approach to writing your web-based
acceptance tests that has worked well for usin the past.

1. Define and organize the requirements or user stories you need to test
2. Write high level pending tests for the acceptance criteria
3. Choose atest to implement, and break it into asmall (typically between 3 and 7) high-level steps

4. Implement these steps, either by breaking them down into other steps, or by accessing Page
Objects.

5. Implement any new Page Object methods that you have discovered.
Note

These steps should not been seen as alinear or waterfall-style approach. Indeed, the processis
usually quite incremental, with requirements being added to the Appl i cat i on class asthey are
required, and pending tests being used to defined tests before they are fleshed out.

4.1. Organizing your requirements

To get the most out of automated tests in Thucydides, you need to tell Thucydides which features of
your application you are testing in each test. While this step is optional, it is highly recommended.

The current version of Thucydides uses a simple, three-level organization to structure acceptance
tests into more manageabl e chunks. At the highest level, an application is broken into features, which
isahigh-level functionality or group of related functions. A feature contains a number of stories
(corresponding to user stories, use cases, and so on). Each story is validated by a number of examples,
or acceptance criteria, which are automated in the form of web tests (sometimes called scenarios).
Each test, in turn, isimplemented using a number of steps.

Of course this structure and these terms are merely a convenience to allow a higher-level vision of
your acceptance tests. However, this sort of three-level abstraction seemsto be fairly common.

In the current version of Thucydides, you define this structure within the test code, as (very light-
weight) Java classes ! This makesit easier to refactor and rename user stories and features within
the tests, and gives a central point of reference in the test suite illustrating what features are being
tested. A simple example is shown here. The Application classis simply a convenient way of placing
the features and user storiesin the one file. Features are marked with the @Feature annotation. User
stories are declared as inner classes nested inside a @Fesature class.

public class Application {

Future versions of Thucydides will support other ways of defining your user requirements.

10

Writing Acceptance
Tests with Thucydides

@reat ure

public class ManageConpani es {
public class AddNewConpany {}
public class Del et eConpany {}
public class ListConpanies {}

}

@reat ure

public class ManageCat egories {
public class AddNewCat egory {}
public class ListCategories {}
public class Del et eCat egory {}

}

@reat ure
public class ManageTags ({

public class D splayTagd oud {}
}

@reat ure
public class ManageJobs {}

@reat ure

public class BrowseJobs {
public class UserLookForJobs {}
public class UserBrowsesJobTabs {}

11

Chapter 5. Defining high-level tests

There are two approaches to automated acceptance criteria or regression tests with Thucydides. Both
involve implementing the tests as a sequence of very high-level steps, and then fleshing out those
steps by drilling down into the details, until you get to the Page Objects. The difference involves the
language used to implement the high-level tests. Tools like easyb are more focused on communication
with non-developers, and allow high level teststo be expressed more easily in business terms.

On the other hand, devel opers often find it more comfortable to work directly with JUnit, so if
communication with non-technical stakeholdersis not a high priority, this might be a preferred option.

In the current version of Thucydides, you can write your tests using easyb (for amore BDD-style
approach) or in JUnit using Java or another JVM language (Groovy is a popular choice). Other BDD
toolswill be supported in future versions. We will discuss both here, but you can use whatever you
and your team are more comfortable with.

5.1. Defining high-level tests in easyb

Easyb (http://easyb.org) is a Groovy-based BDD tool. It makesit easy to write light-weight stories
and scenarios using the classic BDD-style "given-when-then" structure, and then to implement them
in Groovy. The Thucydides easyb plugin is designed to make it easy to write Thucydides tests using

easyb.

5.1.1. Writing a pending easyb story

In easyb, you write tests (referred to as "scenarios") that, when using Thucydides, correspond to
automated acceptance criteria. Tests are grouped into "stories" - each story hasit’s own file.

Scenarios are first written as "pending”. These are just high-level outlines, describing a set of
acceptance criteriafor a particular story in a"given-when-then" structure.

When the tests are executed, pending scenarios are skipped. However they appear in the reports, so
that you know what features still need to be implemented. An example of how pending scenarios
appear in a Thucydides report can be seen in Figure 5.1, “Pending tests are shown with the calendar
icon”.

12

http://easyb.org

Defining high-level tests

Figure5.1. Pending tests are shown with the calendar icon

I thucydides

Features Stories
Home /Features

Stories - All stories

Stories Tests Failed Pending Coverage

® Add new category 5 2 1 71.4% _:|
(#THUCINT-1, #THUCINT-2, #THUCINT-3} e

™ Add new company 7 0 1 84.8% IIIINIGIGNGEGED
& Delete category 1 0 0 100% NG
& Delete compan 1 0 0 100% _

= Job seeker applies for job

1 0 1 o
his test is pending o 51.79 I
© List categorie 1 0 o 100 I

=) Jjob seeker can apply for a job online

= Job seeker browses Job ads

Hereis an example of a pending easyb story using Thucydides:

usi ng "thucydi des"

i mport net.thucydi des. denps. j obboar d. r equi r enent s. Appl i cati on. ManageCat egori es. AddNewCat
t hucydi des.tests_story AddNewCat egory

scenario "The adm nistrator adds a new category to the systent,

{
given "a new category needs to be added to the systent
when "t he adnini strator adds a new cat egory"
then "the system should confirmthat the category has been created"
and "the new category should be visible to job seekers"
}

scenario "The adm nistrator adds a category with an existing code to the systent

{

given "the adnministrator is on the categories |ist page"
when "t he user adds a new category with an existing code"
then "an error message shoul d be di spl ayed"

}

Let’s examine this story piece-by-piece. First, you need to declare that you are using Thucydides. Y ou
do this by using the easyb using keyword:

usi ng "thucydi des"

Thiswill, among other things, inject thet hucydi des object into your story context so that you can
configure Thucydides to run your story correctly.

Next, you need to tell Thucydides what story you are testing. Y ou do this by referencing one of the
story classes you defined earlier. That’s what we are doing here:

13

Defining high-level tests

i mport net.thucydi des. denps. j obboar d. r equi r enent s. Appl i cati on. ManageCat egori es. AddNewCat

t hucydi des. tests_story AddNewCat egory

Therest of the easyb story isjust a set of regular easyb pending scenarios. For the moment, thereis no
implementation, so they will appear as "pending” in the reports:

scenario "The adm ni strator adds a new category to the systent,

{
given "a new category needs to be added to the systent
when "t he adm ni strator adds a new cat egory"
then "the system should confirmthat the category has been created"
and "the new category should be visible to job seekers"
}

scenario "The adm ni strator adds a category with an existing code to the systent

{

given "the administrator is on the categories |ist page"
when "t he user adds a new category with an existing code"
then "an error message shoul d be di spl ayed"”

}

You typically declare many pending stories, preferably in collaboration with the product owner
or BAs, a the start of an iteration. This lets you get a good picture of what stories need to be
implemented in agiven iteration, and also an idea of the relative complexity of each story.

5.1.2. Implementing the easyb stories

The next step isto implement your stories. Let’slook at an implemented version of the first of these
scenarios:

usi ng "t hucydi des"

i mport net.thucydi des. denps. j obboar d. r equi r enent s. Appl i cati on. ManageCat egori es. AddNewCat
i mport net.thucydi des. denps. j obboar d. st eps. Admi ni st rat or St eps
i mport net.thucydi des. denps. j obboar d. st eps. JobSeeker St eps

t hucydi des. uses_default base url "http://I ocal host: 9000"
t hucydi des. uses_st eps_from Adm ni str at or St eps

t hucydi des. uses_st eps_from JobSeeker St eps

t hucydi des. tests_story AddNewCat egory

def cl eanup_dat abase() {
adm ni strator. del etes_cat egory("Scal a Devel opers");

}
scenario "The adm nistrator adds a new category to the systent,
{ given "a new category needs to be added to the systent,
{ adm nistrator.logs in to adm n_page if first time()
adm ni strat or. opens_categories |ist()
&hen “"the adnministrator adds a new cat egory",
{

adm ni strator. sel ects_add_cat egory()
adm ni st rat or. adds_new _cat egory("Scal a Devel opers", " SCALA")

14

Defining high-level tests

}

then "the system should confirmthat the category has been created"

{

adm ni strator. shoul d_see_confirmati on_nessage "The Category has been created”

}
and "the new category should be visible to job seekers",
{

j ob_seeker . opens_j obs_page()

j ob_seeker.shoul d_see_job_category "Scal a Devel opers"
}

}

Again, let’ s break this down. In the first section, we import the classes we need to use:
usi ng "thucydi des"

i mport net.thucydi des. denps. j obboar d. r equi r enent s. Appl i cat i on. ManageCat egor i es. AddNewCat
i mport net.thucydi des. denps. j obboar d. st eps. Adni ni st rat or St eps
i mport net.thucydi des. denps. j obboar d. st eps. JobSeeker St eps

Next, we declare the default base URL to be used for the tests. Like the equivalent annotation in the
JUnit tests, thisis used for tests executed from within the IDE, or if no base URL is defined on the
command line using the webdri ver . base. ur| parameter.

t hucydi des. uses_default _base url "http://I ocal host: 9000"

We also need to declare the test step libraries we will be using. We do this using
thucydides.uses_steps from. Thiswill inject an instance variable into the easyb context for each
declared step library. If the step library class name ends in Seps (e.g. JobSeekerSteps), the name of
the variable will be the class name less the Steps suffix, converted to lower case and underscores (e.g.
"job_seeker"). We will learn more about implementing test step libraries further on.

t hucydi des. uses_st eps_from Adm ni str at or St eps
t hucydi des. uses_st eps_from JobSeeker St eps
t hucydi des. tests_story AddNewCat egory

Finally we implement the scenario. Notice, that since thisis Groovy, we can declare fixture methods
to help set up and tear down the test environment as required:

def cl eanup_dat abase() {
admi ni strator. del etes_cat egory("Scal a Devel opers");
}

The implementation usually just invokes step methods, asillustrated here:

scenario "The adm nistrator adds a new category to the systent,

{

given "a new category needs to be added to the systent,

{
adm nistrator.logs in to adm n_page if first _tinme()
adm ni strator. opens_categories |ist()

}
when "the adm ni strator adds a new cat egory",
{
adm ni strator. sel ects_add_cat egory()
adm ni st rat or. adds_new _cat egory("Scal a Devel opers", " SCALA")
}

15

Defining high-level tests

then "the system should confirmthat the category has been created"

{
adm ni strator. shoul d_see_confirmati on_nessage "The Category has been created”
}
and "the new category should be visible to job seekers",
{
j ob_seeker . opens_j obs_page()
j ob_seeker.shoul d_see_job_category "Scal a Devel opers"
cl eanup_dat abase()
}

}

5.2. Defining high-level tests in JUnit

Thucydides integrates smoothly with ordinary JUnit 4 tests, using the ThucydidesRunner test runner
and afew other specialized annotations. Thisis one of the easiest ways to start out with Thucydides,
and isvery well suited for regression testing, where communication and clarification with the various
stakeholdersisless of arequirement.

Hereis an example of a Thucydides JUnit web test:

@unW t h(Thucydi desRunner . cl ass)
@3t or y(User LookFor Jobs. cl ass)
public class LookForJobsStory {

@managed
public WebDri ver webdriver;

@managedPages(defaul tUl = "http://| ocal host: 9000")
publ i c Pages pages;

@3t eps
publ i c JobSeeker St eps j ob_seeker

@est
public void user | ooks for jobs by key word() {
j ob_seeker . opens_j obs_page();
j ob_seeker. searches for_jobs using("Java");
j ob_seeker. shoul d_see nmessage("No jobs found.");

}
@est

public void when_no_mat chi ng_j ob_found _shoul d di spl ay_error_nessage() {
j ob_seeker . opens_j obs_page();
j ob_seeker. searches for_jobs_ using("unknownJobCriteria");
j ob_seeker. shoul d_see nmessage("No jobs found.");

}

@endi ng @est
public void tags shoul d _be displayed to help_the user find jobs() {}

@endi ng @est
public void the user can list _all _of the jobs for_a given_tag() {}

@endi ng @est
public void the user can_see the total nunber of jobs on offer() {}

16

Defining high-level tests

}

Let’s examine this section-by-section. The class starts with the @RunWith annotation, to indicate that
thisisa Thucydides test. We also use the @Story annotation to indicate which user story (defined
as nested classes of the the @Feature classes above) is being tested. Thisis used to generate the

aggregate reports.

@unW t h(Thucydi desRunner . cl ass)
@3t or y(User LookFor Jobs. cl ass)
public class LookForJobsStory {

Next, come two essential annotations for any web tests. First of al, your test case needs a public
Vebdri ver field, annotated with the @anaged annotation. This enables Thucydides to take care of
opening and closing aWebDriver driver for you, and lets Thucydides use this driver in the pages and
test steps when the tests are executed:

@managed
public WebDri ver webdriver;

The second essential field is an instance of the Pages class, annotated with the @/anagedPages
annotation. Thisis essentially a page factory, that Thucydides usesto provide you with instantiated
page objects. The def aul t Ur | attribute lets you define a URL to use when your pages open, if no
other base URL has been defined. Thisis useful for IDE testing:

@managedPages(defaul tUl = "http://1 ocal host: 9000")
publ i c Pages pages;

Note that these two annotations are only required for web tests. If your Thucydides test does not use
web tests, you can safely leave them out.

For high-level acceptance or regression tests, it is agood habit to define the high-level test asa
sequence of high-level steps. It will make your tests more readable and easier to maintain if you
delegate the implementation details of your test (the "how™) to reusable "step” methods. We will
discuss how to define these step methods later. However, the minimum you need to do is to define the
class where the steps will be defined, using the @5t eps annotation. This annotation tells Thucydidesto
listen to method calls on this object, and (for web tests) to inject the WebDriver instance and the page
factory into the Steps class so that they can be used in the step methods.

@5t eps
public JobSeeker St eps job_seeker

5.2.1. Pending tests

Tests that contain no steps are considered to be pending. Alternatively, you can force a step to be
skipped (and marked as pending) by using the @endi ng annotation or the @ gnor e annotation.

Note that the semantics are dlightly different: @ gnor e indicates that you are temporarily suspending
execution of atest, whereas @endi ng means that the test has been specified but not yet implemented.
So both these tests will be pending:

@rest
public void adm ni strator_adds_an_exi sting_conpany _to the system) {}

17

Defining high-level tests

@endi ng @est
public void adm ni strator_adds_a conmpany_wi th_an_exi sting_code to_the systen() {
steps.login_to_adm n_page();
st eps. open_conpani es_list();
st eps. sel ect _add_conpany();
[/l More to cone

}

A test isalso considered pending if any of the steps used in that test are pending. For a step to be
pending, it needs to be annotated with the @endi ng annotation.

Junit assumptions

Y ou can use junit assumptions [http://junit.sourceforge.net/javadoc/org/junit/Assume.html] in your
tests or step methods to . Steps where the conditions under assumptions fail are marked as PENDING
instead of ERROR. Subsequent steps are also marked as PENDING.

@est
public void admini strator_adds_an_exi sting _conpany _to the system) {}

@est
public void adm ni strator_adds_a conmpany with _an_exi sting code to the systen() {
steps. |l ogin_to_adm n_page();
st eps. open_conpani es_list();
st eps. sel ect _add_conpany();
/1l More to cone

}

@t ep

public void open_conpanies_list() {
Assune. assuneThat (user.role, is("admn"));
Conpani esLi st Page page = pages().get (Conpanyli st Page. cl ass) ;
String conpani eslist = page.get Conpani esLi st ();

In the above example, if the assumption in step open_conpani es_1 i st fails, it and all susbequent
steps will be marked PENDING.

5.2.2. Running tests in a single browser session

Normally, Thucydides opens a new browser session for each test. This helps ensure that each test is
isolated and independent. However, sometimesiit is useful to be able to run tests in a single browser
session, in particular for performance reasons on read-only screens. Y ou can do this by using the
uniqueSession attribute in the @M anaged annotation, as shown below. In this case, the browser will
open at the start of the test case, and not close until all of the tests have been executed.

@unW t h(Thucydi desRunner . cl ass)
public class OpenStaticDenmbPageSanpl e {

@managed(uni queSessi on=t r ue)
public WebDri ver webdriver;

18

http://junit.sourceforge.net/javadoc/org/junit/Assume.html
http://junit.sourceforge.net/javadoc/org/junit/Assume.html

Defining high-level tests

@mnagedPages(defaul tUrl = "cl asspath:static-site/index. htm ")
publ i c Pages pages;

@5t eps
publ i c DenpSiteSteps steps;

@rest

@itle("The user opens the index page")

public void the user_opens_t he page() {
steps. shoul d_di splay("A visible title");

}

@rest

@itle("The user selects a val ue")

public void the user_selects_a value() {
steps. enter_val ues("Label 2", true);
st eps. shoul d_have_sel ect ed_val ue("2");

}

@rest
@itle("The user enters different val ues.")
public void the user_opens_anot her page() {
steps. enter_val ues("Label 3", true);
st eps. do_sonet hi ng() ;
st eps. shoul d_have_sel ect ed_val ue("3");

}

If you do not need WebDriver support in your test, you can skip the @anaged and @ages
annotations, e.g.

@unW t h(Thucydi desRunner . cl ass)
@t ory(Appl i cati on. Backend. ProcessSal es. cl ass)
public class WrkWthBackendTest {

@5t eps
publ i c BackendSt eps backend;

@rest

public void when_processing a sale transation() {
backend. accepts_a _sal e _transaction();
backend. shoul d_t he_updat e_mai nframe() ;

}

5.3. Adding tags to test cases

Y ou can add arbitrary tags to your tests both in junit and easyb. Tags provide context to tests. A tag
has two parts - at ype and anane. Thucydides reports categorize tests based on the specified tag

types.

Tag types are arbitrary and you can add as many types as you wish. By default, ast ory tag typeis
automatically added to each test. An example of tags on Thucydides reportsis givenin ?7??

19

Defining high-level tests

Figure5.2. Tag types appear on top. Each tag type displays the tag names.

¥ thucydides

Home Tag Types

ISVl Epics Features Priorities Project-Types

Releasez Stories History

Test Resulis: All Tests

4 tests: 3 passed , 1 pending , 0 failed

Coverage

M Passing [l Pending [l Failing

Tests

5.3.1. Adding tags to junit tests

All available tags
Epics

Audit

Reporting
Search-Capabilities

Features =>1a
Definition-Lookup

History Reports

Lookups

Search

Prionties
High

Project-Types

FProof~OfConcept

Releases
Release-2

Stories
Search By Keyword

Tags are added to junit tests using @v t hTag annotation. The following will add atag of type epi c

with name "Audit".

@Vt hTag(type="epic", name="Audit")

If no type is defined, the default tag type is assumed to be f eat ur e. In other words, the following two

tags are equivalent.
@\VthTag(type="feature", name="Definition-Iookup")

@N t hTag(nane="Def i ni ti on-| ookup")

20

Defining high-level tests

@V t hTag has an alternative, more concise syntax using a colon (:) to separate the tag type and name.
For example,

@V t hTag("epic: Audi t")
or,
@\VthTag("feature: Definition-1ookup")

Multiple tags can be added using @w t hTags annotation or it’s shorter cousin - @V t hTagVal uesCf .
For example,

@N t hTags (
{
@\t hTag(name="1 ookups", type="feature"),
@\Vt hTag(nanme="rel ease-2", type="rel ease")
}

)
Using @V t hTagVal uesCf , the above can be written more succinctly as:

@Vt hTagVal uesOf ({"1 ookups", "rel ease:rel ease-2"})

5.3.2. Adding tags to easyb tests

Tags can be easily added to easyb storiesin the form of t hucydi des. t est s. <t ype> to the stories.
For example,

t hucydi des. tests.feature "history reports”
t hucydi des. tests.epic "reporting"

t hucydi des. tests.epic "audit"

t hucydi des. tests.priority "high"

5.3.3. Filter tests by tags in jUnit

Y ou can filter tests by tag while running Thucydides. This can be achieved by providing asingletag
or acomma separated list of tags from command line. If provided, only classes and/or methods with
tagsin thislist will be executed.

Example:
nvn verify -Dtags="iteration:|1"
or

nvn verify -Dtags="color:red,flavor:strawberry”

5.4. Running Thucydides in different
browsers

Thucydides supports al browser-based WebDriver drivers, i.e. Firefox, Internet Explorer and Chrome,
aswell asHTMLUnit. By default, it will use Firefox. However, you can override this option using the
webdri ver. driver system property. To set thisfrom the command line, you could do the following:

21

Defining high-level tests

$ mvn test -Dwebdriver.driver=iexplorer

If you are not using Firefox by default, it is also useful to define this variable as a property in your
Maven pom.xml file, e.g.

<properties>
<webdri ver. driver >i expl or er </ webdri ver. driver>
</ properties>

For thisto work with JUnit, however, you need to pass the webdriver.driver property to JUnit.
JUnit runsin a separate VM, and will not see the system properties defined in the Maven build.
To get around this, you need to pass them into JUnit explicitly using the systemPropertyV ariables
configuration option, e.g.

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>
<versi on>2. 7. 1</ versi on>
<confi gurati on>
<syst enPr opertyVari abl es>
<webdri ver.driver>${webdriver.driver}</webdriver.driver>
</ syst enPropertyVari abl es>
</ configuration>
</ pl ugi n>

5.4.1. Chrome switches

Thucydides supports chr one. swi t ches System property to define options for the Chrome driver. This
lets you set useful chrome options such as" - - homepage=about : bl ank” or "--no-first-run".
Y ou can provide any number of options, separated by commas, e.g.:

$mvn verify -Dchrone. sw tches="honepage=about : bl ank, --no-first-run"

5.5. Forcing the use of a particular driver
INn atest case or test

The @managed annotation also lets you specify what driver you want to use for a particular test
case, viathedri ver attribute. Current supported values are “firefox”, “iexplorer”, “chrome”

and “htmlunit”. Thedri ver attribute lets you override the system-level default driver for
specific requirements. For example, the following test case will run in Chrome, regardless of the
webdri ver. driver system property value used:

@unW t h(Thucydi desRunner . cl ass)

@Bt ory(Appl i cati on. Sear ch. Sear chByKeywor d. cl ass)

public class Sear chByFoodKeywor dSt oryTest {

@managed(uni queSessi on = true, driver="chronme")
public WebDri ver webdriver;

@managedPages(defaul tUl = "http://ww. googl e. co. nz")
publ i c Pages pages;

@3t eps

22

Defining high-level tests

}

publ i c EndUser St eps endUser;

@rest
public void searching by keyword pears_shoul d_di spl ay_the_corresponding_article() {

endUser.is_the googl e _honme_page();

endUser . ent ers(" pears");

endUser . starts_search();

endUser . shoul d_see_article with title_containing("Pear");

}

@rest
@Vt hDriver ("firefox")

public void searching_by keyword_ pi neappl es_shoul d_di spl ay_t he_correspondi ng_article

endUser.is_the googl e _honme_page();

endUser . ent er s(" pi neappl es") ;

endUser . starts_search();

endUser . shoul d_see_article with_title_containi ng("Pi neappl e");

In easyb, you can use theuses_dri ver directive, asshown here:

usi ng "thucydi des"

t hucydi des. uses_default base url "http://I ocal host: 9000"
t hucydi des. uses_driver chrone

scenario "The adm nistrator adds a new category to the systent,

{

}

given "a new category needs to be added to the systent,

{
adm nistrator.logs_in to admin_page if _first tinme()
admi ni strator. opens_categories list()

}
when "the admini strator adds a new category",
{
admi ni strator. sel ects_add_cat egory()
admi ni st rat or. adds_new _cat egory("Scal a Devel opers", " SCALA")
}

then "the system should confirmthat the category has been created",

{

admi ni strator. shoul d_see _confirmati on_nessage "The Category has been created"

}
and "the new category should be visible to job seekers",
{

j ob_seeker . opens_j obs_page()

j ob_seeker.shoul d_see job _category "Scal a Devel opers"
}

In JUnit, you can also usethe @v t hDri ver annotation to specify adriver for an individual test. This
will override both the system-level driver and the @anaged annotation’s driver attribute, if provided.
For example, the following test will aways run in Firefox:

@est
@NthDriver ("firefox")

public void searching by keyword pi neappl es_shoul d_di spl ay_the corresponding article

23

Defining high-level tests

endUser

endUser .
endUser .
endUser .

.is_the_googl e _hone_page();

ent er s(" pi neappl es");

starts_search();

shoul d_see_article with title_containing("Pineapple");

24

Chapter 6. Writing Acceptance Tests with
JBehave

Thucydides is an open source library designed to make it easier to define, implement and report
on automated acceptance criteria. Until now, Thucydides tests have been implemented using JUnit
or easyb. However the most recent version of Thucydides, version 0.9.x, now lets you write your
acceptance criteria using the popular JBehave framework.

6.1. JBehave and Thucydides

JBehave is an open source BDD framework originally written by Dan North, the inventor of BDD.
It is strongly integrated into the VM world, and widely used by Java development teams wanting to
implement BDD practicesin their projects.

In JBehave, you write automate your acceptance criteria by writing test stories and scenarios using the
familiar BDD "given-when-then" notation, as shown in the following example:

Scenari o: Searching by keyword and cat egory

Gven Sally wants to buy sone antique stanps for her son
VWhen she | ooks for ads in the 'Antiques' category containing 'stanps'
Then she should obtain a list of ads related to 'stanps' fromthe 'Antiques' category

Scenarioslikethisgoin. story files: astory fileis designed to contain all the scenarios (acceptence
criteria) of agiven user story. A story file can also have a narrative section at the top, which gives
some background and context about the story being tested:

In order to find the itens | aminterested in faster
As a buyer
I want to be able to list all the ads with a particular keyword in the description or ti

Scenari o: Searchi ng by keyword and cat egory

Gven Sally wants to buy some antique stanps for her son
When she | ooks for ads in the 'Antiques' category containing 'stanps'
Then she should obtain a |list of ads related to 'stanps’ fromthe 'Antiques' category

Scenari o: Searchi ng by keyword and | ocati on

Gven Sally wants to buy a puppy for her son
When she | ooks for ads in the Pets & Aninmal s category containi ng puppy i n New South Wl e
Then she should obtain a |ist of Pets & Aninmals ads contai ning the word puppy

from advertisers in New South \Wal es

Y ou usually implement a JBehave story using classes and methods written in Java, Groovy or Scala.
Y ou implement the story steps using annotated methods to represent the steps in the text scenarios, as
shown in the following example:

public class SearchSteps {
@5 ven("Sally wants to buy a $gift for her son")
public void sally wants to buy a gift(String gift) {

25

Writing Acceptance
Tests with JBehave

/] test code

}

@hen("Wien she | ooks for ads in the $category category containing $keyword in $regi
public void | ooking for_an_ad(String category, String keyword, String region){

/1 nore test code
}

}

6.2. Working with JBehave and
Thucydides

Thucydides and JBehave work well together. Thucydides uses simple conventions to make it easier to
get started writing and implementing JBehave stories, and reports on both JBehave and Thucydides
steps, which can be seamlessly combined in the same class, or placed in separate classes, depending
on your preferences.

To get started, you will need to add the Thucydides JBehave plugin to your project. In Maven, just
add the following dependencies to your pom.xml file:

<dependency>
<gr oupl d>net . t hucydi des</ gr oupl d>
<artifactld>t hucydi des-core</artifactld>
<ver si on>0. 9. 2</ ver si on>

</ dependency>

<dependency>
<gr oupl d>net . t hucydi des</ gr oupl d>
<artifactld>t hucydi des-j behave-pl ugi n</artifactld>
<ver si on>0. 9. 0</ ver si on>

</ dependency>

New versions come out regularly, so be sure to check the Maven Central repository (http://
search.maven.org) to know the latest version numbers for each dependency.

6.3. Setting up your project and organizing
your directory structure

JBehave isahighly flexible tool. The downside of thisis that, out of the box, JBehave requires quite
abit of bootstrap code to get started. Thucydides tries to ssimplify this process by using a convention-
over-configuration approach, which significantly reduces the amount of work needed to get started
with your acceptance tests. In fact, you can get away with aslittle as an empty JUnit test case and a
sensibly-organized directory structure for your JBehave stories.

6.3.1. The JUnit test runner

The JBehave tests are run viaa JUnit runner. This makesit easier to run the tests both from within
an IDE or as part of the build process. All you need to do is to extend the ThucydidesJUnitStories, as
shown here:

26

http://search.maven.org
http://search.maven.org

Writing Acceptance
Tests with JBehave

package net.thucydi des. showcase. j behave;
i mport net.thucydi des. j behave. Thucydi desJUnit Stori es;

public class JBehaveTest Case extends Thucydi desJUnitStories {
publ i c JBehaveTest Case() {}

}

When you run this test, Thucydides will run any JBehave stories that it finds in the default directory
location. By convention, it will look for a“stories’ folder on your classpath, so “src/test/resources/
stories’ isagood place to put your story files.

6.3.2. Organizing your requirements

Placing all of your JBehave storiesin one directory does not scale well; it is generally better to
organize them in a directory structure that groups them in some logical way. In addition, if you
structure your requirements well, Thucydides will be able to provide much more meaningful reporting
on the test results.

By default, Thucydides supports a ssmple directory-based convention for organizing your
requirements. The standard structure uses three levels. capabilities, features and stories. A story is
represented by a JBehave .story file so two directory levels underneath the st or i es directory will do
the trick. An example of this structure is shown below:

+ src
+ test
+ resources
+ stories
+ grow_pot at oes [a capability]
+ grow_or gani c_pot at oes [a feature]

- plant_organi c_potatoes.story [a story]
- dig_up_organi c_pot at oes. story [anot her story]
+ grow _sweet pot at oes [anot her feat ure]

If you prefer another hierarchy, you can usethet hucydi des. capabi l i ty. t ypes system property
to override the default convention. For example. if you prefer to organize your requirementsin a
hierachy consisting of epics, theme and stories, you could set thet hucydi des. capabi lity. types
property to epic,theme (the story level is represented by the .story file).

When you start a project, you will typically have a good idea of the capabilities you intent to
implement, and probably some of the main features. If you simply store your .story filesin the right
directory structure, the Thucydides reports will reflect these requirements, even if no tests have yet
been specified for them. Thisis an excellent way to keep track of project progress. At the start of an
iteration, the reports will show all of the requirements to be implemented, even those with no tests
defined or implemented yet. As the iteration progresses, more and more acceptance criteriawill be
implemented, until acceptance criteria have been defined and implemented for al of the requirements
that need to be devel oped.

27

Writing Acceptance
Tests with JBehave

Figure 6.1. A Thucyides project using JBehave can organize the storiesin an
appropriatedirectory structure

Vv [5thucydides-jbehave-showcase [thucydides-showcase-jbehave-webtests]
> .idea
v src
v main
v [7java
net.thucydides.showcase.jbehave
v test
v 7java
Vv a7 net.thucydides.showcase.jbehave
steps
" % JBehaveTestCase
Vv {7 resources
Vv i stories
Vv i post_ads
post_item_for_sale
post_job_ad
post_personal_ad
post_real_estate_ad
=] narrative.txt
Vv 5 purchase_ad
organize_delivery
pay_for_ad
| narrative.txt
Vv i view_ads
Vv 5 browse_ads
| narrative.txt
Vv i search_for_ads
| narrative.txt
SearchingByKeyword.story
=] narrative.txt

An optional but useful feature of the JBehave story format is the narrative section that can be placed
at the start of a story to help provide some more context about that story and the scenarios it contains.
This narrative will appear in the Thucydides reports, to help give product owners, testers and other
team members more information about the background and motivations behind each story. For
example, if you are working on an online classifieds website, you might want usersto be able to
search ads using keywords. Y ou could describe this functionality with atextual description like this
one:

28

Writing Acceptance
Tests with JBehave

Story: Search for ads by keyword

In order to find the items | aminterested in faster

As a buyer

| want to be able to list all the ads with a particul ar keyword
in the description or title.

However to make the reports more useful still, it isagood ideato document not only the stories, but
to also do the same for your higher level requirements. In Thucydides, you can do this by placing
atextfilecalled narrati ve. t xt ineach of the requirements directories you want to document

(see below). These files follow the JBehave/ Cucumber convention for writing narratives, with an
optional title on the first line, followed by a narrative section started by the keyword Nar r at i ve: . For
example, for a search feature for an online classifieds web site, you might have a description along the
following lines:

Search for online ads

Narrative

In order to increase sales of advertised articles

As a seller

| want potential buyers to be able to display only the ads for
articles that they m ght be interested in purchasing.

When you run these stories (without having implemented any actual tests), you will get areport
containing lots of pending tests, but more interestingly, alist of the requirements that need to be
implemented, even if there are no tests or stories associated with them yet. This makesit easier to
plan an iteration: you will initially have a set of requirements with only afew tests, but as the iteration
moves forward, you will typically see the requirementsfill out with pending and passing acceptance
criteriaas work progresses.

Figure6.2. You can seetherequirementsthat you need to implement n the
requirementsreport

I thucydides

Home > Capabilities

Test Results Capabilities Features Stories History

2 tests: 0 passed, 2 pending , O failed

Capabilities

| °| D < Capability -
Post ads

° As a seller 4 o o o o o

I want to be able to display things I want to sell online

Purchase ad

Q As a buyer 2 0 0 0 0 O%l:l

I want to be able to purchase the item

View ads

o As a buyer o
I want to be able to list all the ads with a particular keyword in2 2 0 0 2 0 /0|:|
the description or title.

Eﬁ—

29

Writing Acceptance
Tests with JBehave

Narrative in asciidoc format

Narratives can be written in Asciidoc [http://www.methods.co.nz/asciidoc/] for richer formatting. Set
thenarrative. f or mat property to asci i doc to allow Thucydides to parse the narrative in asciidoc

format.

For example, the following narrative,
Item search

Narrati ve:
In order to find the itens | aminterested in faster

As a +buyer +
*I want to be able to list all the ads with a particular keyword in the description or ti

will be rendered on the report as shown below.

Figure 6.3. Narrative with asciidoc formatting

[10 |4
Search:
o e e

() 1tem search
In order to find the items I am interested in faster

o As a buyer 1 2 2 0o o o 100% N

I want to be able to list all the ads with a
particular keyword in the description or title.

6.3.3. Customizing the requirements module

Y ou can aso easily extend the Thucydides requirements support so that it fitsin to your
own system. Thisis atwo-step process. First, you need to write an implementation of the
Requi r ement sTagPr ovi der interface.

package com acne.tests

public class MyRequirenment sTagProvi der inpl enents Requirenent sTagProvi der {

@verride
publ i c List<Requirenment> get Requirenments() {
/!l Return the full Iist of available requirenments from your system
}
@verride

publ i c Opti onal <Requi r enent > get Par ent Requi r enment Of (Test Qut cone t est Qut cone) {
/!l Return the requirenent, if any, associated with a particular test result

}

@verride
publ i c Set<Test Tag> get TagsFor (Test Qut cone test Qut cone) {

/!l Return all the requirenents, and other tags, associated with a particul ar test

}

30

http://www.methods.co.nz/asciidoc/
http://www.methods.co.nz/asciidoc/

Writing Acceptance
Tests with JBehave

Next, create atext filein your src/ mai n/ r esour ces/ META- | NF/ ser i ces directory called
net.thucydi des. core. stati stics. service. TagProvi der, and put the fullly qualified name of
your RequirementsTagProvider implementation.

6.3.4. Story meta-data

Y ou can use the JBehave Metatag to provide additional information to Thucydides about the test. The
@driver annotation lets you specify what WebDriver driver to use, eg.

Met a:
@iri ver htm unit

Scenari o: A scenario that uses sel enium

Gven | amon the test page

Wien | enter the first nane <firstnanme>

And | enter the | ast nane <l astnane>

Then | shoul d see <firstnane> and <l astnane> in the nanes fields
And | shoul d be using H nl Unit

Exanpl es:

| firstnane| |l ast nane|
| Joe | Bl ow

| John | Doe |

Y ou can also use the @issue annotation to link scenarios with issues, asillustrated here:

Met a:
@ ssue MYPRQJ-1, MYPRQI- 2

Scenario: A scenario that works
Met a:

@ ssues MYPRQJ- 3, MYPRQJ- 4

@ ssue MYPRQJ-5

G ven | have an inpl enented JBehave scenari o
And the scenari o works

When | run the scenario

Then | should get a successful result

Y ou can a'so attribute tags to the story as awhole, or to individual scenarios:

Met a:
@ag capability:a capability

Scenario: A scenario that works
Met a:
@ags domain:a domain, iteration: iteration 1

G ven | have an inpl enented JBehave scenario
And the scenari o works

When | run the scenario

Then | should get a successful result

31

Writing Acceptance
Tests with JBehave

6.3.5. Implementing the tests

If you want your tests to actually do anything, you will also need classes in which you place your
JBehave step implementations. If you place these in any package at or below the package of your
main JUnit test, JBehave will find them with no extra configuration.

Thucydides makes no distinction between the JBehave-style @Given, @When and @Then
annotations, and the Thucydides-style @Step annotations: both will appear in the test reports.
However you need to start with the @Given, @When and @Then-annotated methods so that JBehave
can find the correct methods to call for your stories. A method annotated with @Given, @When or
@Then can cal Thucydides @Step methods, or call page objects directly (though the extralevel of
abstraction provided by the @Step methods tends to make the tests more reusable and maintainable on
larger projects).

A typical example is shown below. In thisimplementation of one of the scenarios we saw above, the
high-level steps are defined using methods annotated with the JBehave @Given, @When and @Then
annotations. These methods, in turn, use steps that are implemented in the BuyerSteps class, which
contains a set of Thucydides @Step methods. The advantage of using this two-leveled approach is that
it helps maintain a degree of separation between the definition of what isbeing donein atest, and how
it is being implemented. This tends to make the tests easier to understand and easier to maintain.

public class SearchScenari oSteps {
@5t eps
Buyer St eps buyer;

@i ven("Sally wants to buy a $present for her son")
public void buyi ngAPresent (String present) {
buyer . opens_home_page() ;

}

@Wen("she | ooks for ads in the $category category containing $keyword in $regi on")
public void adSear chByCat egor yAndKeywor dl nARegi on(Stri ng category, String keyword, Str
buyer . chooses_regi on(regi on);
buyer . chooses_cat egory_and_keywor ds(cat egory, keyword);
buyer . performs_search();

}

@hen("she should obtain a |ist of $category ads containing the word $keyword from a
public void resultsForACat egor yAndKeywor dl nARegi on(String category, String keyword, St
buyer . shoul d_only see results with titles_contai ni ng(keyword);
buyer . shoul d_only_see results fromregion(region);
buyer . shoul d_only_see results_in_category(category);

}

The Thucydides steps can be found in the BuyserSteps class. This class in turn uses Page Objects to
interact with the actual web application, asillustrated here:

public class Buyer St eps extends Scenari oSteps {

HonePage honePage;
Sear chResul t sPage sear chResul t sPage

publ i c Buyer St eps(Pages pages) {
super (pages) ;

32

Writing Acceptance
Tests with JBehave

honePage = get Pages() . get (HonePage. cl ass) ;
sear chResul t sPage = get Pages() . get (Sear chResul t sPage. cl ass) ;
}

@t ep
public void opens_hone_page() {
honePage. open() ;

}

@t ep
public void chooses region(String region) ({
honePage. chooseRegi on(r egi on) ;

}

@t ep

public void chooses category and keywords(String category, String keywords) ({
honePage. chooseCat egor yFr onDr opdown(cat egory) ;
honePage. ent er Keywor ds(keywor ds) ;

}

@t ep
public void perforns_search() {
honePage. per f or nSear ch() ;

}

@t ep

public void should only see results with titles containing(String title) {
sear chResul t sPage. al | Ti t| esShoul dCont ai n(title);

}

}

The Page Objects are similar to those you would find in any Thucydides project, as well as most
WebDriver projects. An exampleislisted below:

@efaul tUl ("http://ww. newscl assi fi eds. com au")
public cl ass HonePage extends PageObject {

@acheLookup
@i ndBy(nane="adFi | ter. searchTer nt)
WebEl enent searchTerm

@achelLookup
@i ndBy(css=". keywords button")
WebEl enent search

publ i c HomePage(WebDriver driver) ({
super (driver);

}

public void chooseRegi on(String region) {

findBy("#l ocation-select .arrow').then().click();

wai t For (500). m | | i seconds();

findBy("//ul [@l ass='dropdown-nenu']//a[.="" + region + "']").then().click();
}

public void chooseCat egor yFronDr opdown(Stri ng category) {
getDriver().navigate().refresh();
fi ndBy("#category-select”).then(".arrow').then().click();

33

Writing Acceptance
Tests with JBehave

findBy("//span[@d=' category-select']//a[contains(.,'" + category + "')]").then(

public voi d enterKeywords(String keywords) {
el enent (searchTerm .t ype(keywor ds) ;

public voi d perfornmBearch() ({
el enent (search).click();

When these tests are executed, the JBehave steps combine with the Thucydides steps to create a
narrative report of the test results:

Figure 6.4. You can seetherequirementsthat you need to implement in the
requirementsreport

! thucydides

Home > Searching by keyword and location

ACE A GETICl Requirements Capabilities Features Stories History

. . 94.29
@ Searching by keyword and location seconds
Story: Searching By Keyword
As a buyer
I want to be able to list all the ads with a particular keyword in the description or titfe.

Searching by keyword (story) Search for ads (feature) View ads (capability)
Steps Screenshot Qutcome Duration
@ Given Sally wants to buy a {puppy} for her son SUCCESS 35.62
seconds
; 10.92
&
&) Opens home page SUCCESS i
When she looks for ads in the {Pets & Animals} category 56.55
(@) e : SUCCESS
containing {puppy} in {New South Wales} seconds
: o 12.46
@ Chooses region: New South Wales SUCCESS
seconds
s Chooses category and keywords: 14.52
)
U Pets & Animals, puppy See=s seconds
@ Performs search SUCCESS ZEHE
seconds
Then she should obtain a list of {Pets & Animals} ads 211
@ containing the word {puppy} from advertisers in {New South SUCCESS '
seconds
Wales}
@ Should only see results with titles containing: puppy — | SUCCESS 0.57 seconds
e}
&) should only see results from region: New South Wales = SUCCESS 0.5 seconds
e}
&) Should only see results in category: Pets & Animals = SUCCESS 0.52 seconds
e}

Writing Acceptance
Tests with JBehave

6.4. JBehave Maven Archetype

A jBehave archetypeis availble to help you jumpstart a new project. As usual, you can run mvn
archetype:generate from the command line and then select the net.thucydides.thucydides-jbehave-
archetype archetype from the proposed list of archetypes. Or you can use your favorite IDE to
generate a new Maven project using an archetype.

This archetype creates a project directory structure similar to the one shown here:

+ main
+ java
+ Sanpl eJBehave
+ pages
- DictionaryPage.java
+ steps
- EndUser St eps. j ava
+ test
+ java
+ Sanpl eJBehave
+ j behave
- AcceptanceTest Suite.java
- DefinitionSteps.java
+ resources
+ Sanpl eJBehave
+ stories
+ consult_dictionary
- LookupADefinition.story

6.5. Running all tests in a single browser
window

All web tests can be run in a single browser window using either by setting
the thucydides.use.unique.browser system property or programmatically using
runThucydides().inASingleSession() inside the junit runner.

package net.thucydi des. showcase. j behave;

i mport net.thucydi des. jbehave. Thucydi desJUnit Stori es;

public class JBehaveTest Case extends Thucydi desJUnitStories {
publ i ¢ JBehaveTest Case() {

runThucydi des() . i nASi ngl eSessi on() ;
}

35

Chapter 7. Implementing Step Libraries

Once you have defined the steps you need to describe your high level tests, you need to implement
these steps. In an automated web test, test steps represent the level of abstraction between your Page
Objects (which are designed in terms of actions that you perform on a given page) and higher-level
stories (sequences of more business-focused actions that illustrate how a given user story has been
implemented). Steps can contain other steps, and are included in the Thucydides reports. Whenever a
step is executed, a screenshot is stored and displayed in the report.

7.1. Creating Step Libraries

Test steps are regular java methods, annotated with the @t ep annotation. Y ou organize steps and step
groupsin step libraries. A step library isjust anormal Java class. If you are running web tests, your
step library should either have a Pages member variable, or (more simply) extend the Scenar i oSt eps
class, e.g.

public class JobSeeker St eps extends Scenari oSt eps {
publ i c JobSeeker St eps(Pages pages) {
super (pages) ;
}

@t ep

public void opens_jobs page() {
Fi ndAJobPage page = get Pages(). get (Fi ndAJobPage. cl ass) ;
page. open();

}

@t ep

public void searches for jobs using(String keywords) {
Fi ndAJobPage page = get Pages(). get (Fi ndAJobPage. cl ass) ;
page. | ook _for _jobs w th_keywords(keywords);

}

Note that step methods can take parameters. The parameters that are passed into a step method will
be recorded and reported in the Thucydides reports, making this an excellent technique to make your
tests more maintainable and more modular.

Steps can also call other steps, which isvery useful for more complicated test scenarios. The result is
the sort of nested structure you can see in Figure 2.1, “ A test report generated by Thucydides’.

36

Chapter 8. Defining Page Objects

If you are working with WebDriver web tests, you will be familiar with the concept of Page Objects.
Page Objects are away of isolating the implementation details of aweb page inside a class, exposing
only business-focused methods related to that page. They are an excellent way of making your web
tests more maintainable.

In Thucydides, page objects can be just ordinary WebDriver page objects, on the condition that they
have a constructor that accepts a WebDriver parameter. However, the Thucydides Pagebj ect class
provides a number of utility methods that make page objects more convenient to work with, so a
Thucydides Page Object generally extends this class.

Hereisasimple example:

@efaul tUl ("http://1 ocal host: 9000/ sonmepage")
public class Fi ndAJobPage extends Page(bject ({

WebEl enent keywor ds;
WebEl enent sear chButton

publ i c Fi ndAJobPage(WebDri ver driver) {
super (driver);
}

public void | ook for_jobs wth keywords(String val ues) {
t ypel nt o(keywor ds, val ues);
searchButton. click();

}

public List<String> getJobTabs() {
Li st <WebEl ement > tabs = getDriver().findEl ements(By.xpath("//div[@d="tabs']//a"
return extract (tabs, on(WebEl ement. cl ass). get Text());

}

Thet ypel nt o method is a shorthand that simply clears afield and enters the specified text. If you
prefer amore fluent-API style, you can also do something like this:

@efaul tUl ("http://1 ocal host: 9000/ sonepage")
public class Fi ndAJobPage extends Page(bject ({
WebEl ement keywor dsFi el d;
WebEl ement sear chButton

publ i ¢ Fi ndAJobPage(WebDriver driver) {
super (driver);
}

public void | ook for jobs wth keywords(String val ues) {
**ent er (val ues) . i nt o(keywor dsFi el d) ; **
searchButton. click();

}

public List<String> getJobTabs() {
Li st <WebEl enent > tabs = getDriver().findEl ements(By.xpath("//div[@d="tabs'].
return extract (tabs, on(WebEl enent. cl ass). get Text());

37

Defining Page Objects

}

Y ou can use an even more fluent style of expressing the implementation steps by using methods like
find,findBy andt hen.

For example, you can use webdriver "By" finders with element name, id, css selector or xpath selector
asfollows:

page. fi nd(By. nane("denn")) .t hen(By. nane("speci al Fi el d")). get Val ue();
page. fi nd(By. cssSel ector (".fo00")).getVal ue();
page. fi nd(By. xpath("//th")). get Val ue();

You can also usefi ndBy method and pass the css or xpath selector directly. For example,

page. fi ndBy (" #demp") .t hen("#speci al Fi el d").getValue(); //css selectors

page. fi ndBy("//di v[@d="dataTable']").getValue(); //xpath sel ector

8.1. Using pages in a step library

When you need to use a page object in one of your steps, you just ask for one from the Page factory,
providing the class of the page object you need, e.g.

Fi ndAJobPage page = get Pages() . get (Fi ndAJobPage. cl ass) ;

If you want to make sure you are on the right page, you can use the cur r ent PageAt () method. This
will check the page class for any @t annotations present in the Page Object class and, if present,
check that the current URL corresponds to the URL pattern specified in the annotation. For example,
when you invoke it using cur r ent PageAt () , the following Page Object will check that the current
URL is precisely http://www.apache.org.

@\t ("http://ww. apache. org")
public class ApacheHonePage extends Page(bject ({

}

The @t annotation also supports wildcards and regular expressions. The following page object will
match any Apache sub-domain:

@\t ("http://.*.apache. org")
public class AnyApachePage extends PageObject {

}

More generally, however, you are more interested in what comes after the host name. Y ou can use the
special #HOST token to match any server name. So the following Page Object will match both http://
local host: 8080/ app/action/login.form an http://staging.acme.com/app/action/login.form. It will aso
ignore parameters, so http://staging.acme.com/app/action/login.form?username=toto& password=0z
will work fine too.

@At (url s={"#HOST/ app/ acti on/ | ogi n. form'})
public class Logi nPage extends Page(bject ({

}

38

http://www.apache.org
http://localhost:8080/app/action/login.form
http://localhost:8080/app/action/login.form
http://staging.acme.com/app/action/login.form
http://staging.acme.com/app/action/login.form?username=toto&password=oz

Defining Page Objects

8.2. Opening the page

A page object is usually designed to work with a particular web page. When the open() method is
invoked, the browser will be opened to the default URL for the page.

The @ef aul t Url annotation indicates the URL that this test should use when run in isolation (e.g.
from within your IDE). Generally, however, the host part of the default URL will be overridden

by thewebdri ver . base. ur| property, asthis allows you to set the base URL across the board

for al of your tests, and so makesit easier to run your tests on different environments by simply
changing this property value. For example, in the test class above, setting the webdr i ver . base. url
to https://staging.mycompany.com would result in the page being opened at the URL of https://
staging.mycompany.comnm/somepage.

Y ou can a'so define named URL s that can be used to open the web page, optionally with parameters.
For example, in the following code, we define a URL called open.issue, that acceptsasingle
parameter:

@efaul tUl ("http://jira. myconpany. org")
@\amedUr | s(

{
@NanmedUr | (nane = "open.issue", url = "http://jira. myconpany.org/issues/{1}")

}
)

public class Jiral ssuePage extends PageObject {

}
Y ou could then open this page to the http://jira.mycompany.org/issues/I SSUE-1 URL as shown here:

page. open("open.issue", wthParameters("lSSUE-1"));

Y ou could also dispense entirely with the base URL in the named URL definition, and rely on the
default values:

@efaultUl ("http://jira. myconmpany. org")
@NanmedUr | s(
{

@\anedUr | (name = "open.issue”, url = "/issues/{1}")

}
)

public class Jiral ssuePage extends PageCbject {

}

And naturally you can define more than one definition:

@\amedUr | s(
{
@anmedUr | (nane = "open.issue", url = "/issues/{1}"),
@anmedUr | (nane = "cl ose.issue", url = "/issues/close/{1}")

}
)

Y ou should never try to implement the open() method yourself. In fact, it isfinal. If you need your
page to do something upon loading, such as waiting for a dynamic element to appear, you can use the

39

http://jira.mycompany.org/issues/ISSUE-1

Defining Page Objects

@WhenPageOpens annotation. Methods in the PageObject with this annotation will be invoked (in an
unspecified order) after the URL has been opened. In this example, the open() method will not return
until the dataSection web element isvisible:

@efaultUl ("http://1ocal host:8080/client/list")
public class CientlList extends PageObject {

@i ndBy(i d="dat a- secti on");
WebEl enent dat aSecti on

@henPageOpens
public void waitUntil Titl eAppears() {
el ement (dat aSection).waitUntil Visible();

}
}

8.3. Working with web elements

Important

The element() method described below is no longer needed. See Web Element Facade section
for details.

8.3.1. Checking whether elements are visible

The element method of the PageObject class provides a convenient fluent API for dealing with web
elements, providing some commonly-used extra features that are not provided out-of-the-box by the
WebDriver API. For example, you can check that an element is visible as shown here:

public class Fi ndAJobPage extends Page(bject ({
WebEl enent sear chButt on

publ i c bool ean searchButtonl sVisible() {
return el enent (searchButton).isVisible();

}
_

If the button is not present on the screen, the test will wait for a short period in case it appears due to
some Ajax magic. If you don’t want the test to do this, you can use the faster version:

publ i ¢ bool ean searchButtonl sVisi bl eNow() {
return el ement (searchButton).isCurrentlyVisible();

}
Y ou can turn thisinto an assert by using the shoul dBeVi si bl e() method instead:

publ i c voi d checkThat Sear chButtonl sVi si bl e() {
el enent (sear chBut t on) . shoul dBeVi si bl e() ;

}

This method will through an assertion error if the search button is not visible to the end user.

40

Defining Page Objects

If you are happy to expose the fact that your page has a search button to your step methods, you can
make things even simpler by adding an accessor method that returns a WebElementFacade, as shown
here:

publ i c WebEl enent Facade searchButton() ({
return el enent (searchButton);

}
Then your steps will contain code like the following:

sear chPage. sear chBut t on() . shoul dBeVi si bl e() ;

8.3.2. Checking whether elements are enabled

Y ou can aso check whether an element is enabled or not:

el ement (sear chButt on). i sEnabl ed() el ement (searchButt on). shoul dBeEnabl ed()

There are a so equivalent negative methods:

el enent (sear chBut t on) . shoul dNot BeVi si bl e() ;
el enent (sear chBut t on) . shoul dNot BeCur rent | yVi si bl e();
el enent (sear chBut t on) . shoul dNot BeEnabl ed()

Y ou can also check for elements that are present on the page but not visible, e.g:

el ement (searchButton).isPresent();

el ement (sear chBut t on) . i sNot Present () ;

el ement (sear chBut t on) . shoul dBePr esent () ;

el ement (sear chBut t on) . shoul dNot BePr esent () ;

8.3.3. Manipulating select lists

There are also helper methods available for drop-down lists. Suppose you have the following
dropdown on your page:

<sel ect id="color">
<option val ue="red" >Red</ opti on>
<opti on val ue="Dbl ue">Bl ue</ opti on>
<option val ue="green">G een</ opti on>
</ sel ect >

Y ou could write a page object to manipulate this dropdown as shown here:
public class Fi ndAJobPage extends Page(bject ({

@i ndBy(i d="col or")
WebEl ement col or Dr opdown;

publ i c sel ect Dr opdownVal ues() {
el ement (col or Dr opdown) . sel ect ByVi si bl eText ("Bl ue") ;
assert That (el enment (col or Dropdown) . get Sel ect edVi si bl eText Val ue(), is("Blue"))

el ement (col or Dr opdown) . sel ect ByVal ue(" bl ue") ;
assert That (el ement (col or Dr opdown) . get Sel ect edVal ue(), is("blue"));

page. el enment (col or Dr opdown) . sel ect Byl ndex(2) ;
assert That (el ement (col or Dr opdown) . get Sel ect edVal ue(), is("green"));

41

Defining Page Objects

}
8.3.4. Determining focus

Y ou can determine whether a given field has the focus as follows:
el ement (first Nane). hasFocus()
Y ou can also wait for elements to appear, disappear, or become enabled or disabled:

el ement (button).waitUntil Enabl ed()
el ement (button).waitUntil D sabl ed()

or

el enent (field).waitUntil Visible()
el ement (but ton) . wai t Until Not Vi si bl e()

8.3.5. Using WebElementFacade variables directly

Instead of declaring WebElement variables in Page Objects and then calling element() or $() to wrap
them in WebElementFacades, you can now declare WebElementFacade variables directly inside the
Page Objects. Thiswill make the Page Object code simpler more readable.

So, instead of writing,
public class Fi ndAJobPage extends Page(bject ({
WebEl ement sear chButton

publ i c bool ean searchButtonl sVisible() {
return el enent (searchButton).isVisible();

}
_

you can write,

public class Fi ndAJobPage extends Page(bject ({
WebEl enent Facade sear chButton

publ i ¢ bool ean searchButtonl sVisible() {
return searchButton.isVisible();

}
_

8.3.6. Using direct XPath and CSS selectors

Another way to access aweb element is to use an XPath or CSS expression. Y ou can use the el enent
method with an XPath expression to do this more simply. For example, imagine your web application
needs to click on alist item containing a given post code. One way would be as shown here:

42

Defining Page Objects

WebEl enent sel ect edSuburb = getDriver().findEl enent (By.xpath("//li/a[contains(.,'" + posi
sel ect edSuburb. cli ck();

However, asimpler option would be to do this:

el ement (By. xpath("//li/a[contains(.,"'" + postcode + "')]")).click();

8.4. Working with Asynchronous Pages

Asynchronous pages are those whose fields or datais not all displayed when the page is |oaded.
Sometimes, you need to wait for certain elements to appear, or to disappear, before being able to
proceed with your tests. Thucydides provides some handy methods in the PageObject base classto
help with these scenarios. They are primarily designed to be used as part of your business methodsin
your page objects, though in the examples we will show them used as external calls on a PageObject
instance for clarity.

8.4.1. Checking whether an element is visible

In WebDriver terms, there is a distinction between when an element is present on the screen (i.e. in
the HTML source code), and when it isrendered (i.e. visible to the user). Y ou may also need to check
whether an element is visible on the screen. Y ou can do thisin two ways. Y our first option isto use
the isElementVisible method, which returns a boolean value based on whether the element is rendered
(visible to the user) or not:

assert That (i ndexPage. i sEl enent Vi si bl e(By. xpath("//h2[.="A visible title']")), is(true));
or

assert That (i ndexPage. i sEl enent Vi si bl e(By. xpath("//h2[.="An invisible title']")), is(fals
Y our second option isto actively assert that the element should be visible:

i ndexPage. shoul dBeVi si bl e(By. xpath("//h2[.="An invisible title']");

If the element does not appear immediately, you can wait for it to appear:

i ndexPage. wai t For Render edEl enent s(By. xpath("//h2[.="A title that is not inmediately visi

An alternative to the above syntax is to use the more fluid wai t For method which takes a css or xpath
selector as argument:

i ndexPage. wai t For (" #popup"); //css sel ector

i ndexPage. waitFor ("//h2[.="A title that is not imediately visible']"); //xpath sel ector

If you just want to check if the element is present though not necessarily visible, you can use
wai t For Render edEl ement sToBePr esent :

i ndexPage. wai t For Render edEl enent sToBePr esent (By. xpath("//h2[.="A title that is not inmed
or its more expressive flavour, wai t For PresenceO which takes a css or xpath selector as argument.
i ndexPage. wai t For PresenceC ("#popup"); //css

i ndexPage. wai t For PresenceCf ("//h2[.="Atitle that is not imediately visible]"); //xpat

43

Defining Page Objects

Y ou can aso wait for an element to disappear by using wai t For Render edEl ement sToDi sappear Of
wai t For AbsenceO :

i ndexPage. wai t For Render edEl enent sToDi sappear (By. xpath("//h2[.="A title that will soon di
i ndexPage. wai t For AbsenceC (" #popup”) ;
i ndexPage. wai t For AbsenceOf ("//h2[.="A title that will soon disappear']");

For simplicity, you can also use the wai t For Text ToAppear and wai t For Text ToDi sappear methods:

i ndexPage. wai t For Text ToDi sappear ("A visible bit of text");

If several possible texts may appear, you can use wai t For Any Text ToAppear Of
wai t For Al | Text ToAppear :

i ndexPage. wai t For Any Text ToAppear ("t his ni ght appear”,"or this", "or even this");

If you need to wait for one of several possible elements to appear, you can aso use the
wai t For AnyRender edEl ement Of method:

i ndexPage. wai t For AnyRender edEl enent Of (By.id("color"), By.id("taste"), By.id("sound"));

8.5. Executing Javascript

There are times when you may find it useful to execute alittle Javascript directly within the browser
to get the job done. You can use the eval uat eJavascri pt () method of the Pagebj ect classto
do this. For example, you might need to evaluate an expression and use the result in your tests. The
following command will evaluate the document title and return it to the calling Java code:

String result = (String) eval uateJavascript("return docunent.title");

Alternatively, you may just want to execute a Javascript command locally in the browser. In the
following code, for example, we set the focus to the firstname input field:

eval uat eJavascri pt ("docunent . get El enent Byl d(' fi rstname').focus()");
And, if you are familiar with JQuery, you can also invoke JQuery expressions:

eval uat eJavascript ("$(' #firstnanme').focus()");

Thisis often auseful strategy if you need to trigger events such as mouse-overs that are not currently
supported by the WebDriver API.

8.6. Uploading files

Uploading filesis easy. Files to be uploaded can be either placed in a hard-coded location (bad) or
stored on the classpath (better). Here is a simple example:

public cl ass NewConpanyPage extends Page(bject {

@i ndBy(i d="obj ect | ogo")
WebEl enent | ogoFi el d;

publ i ¢ NewConpanyPage(WebDriver driver) {

44

Defining Page Objects

super (driver);

}

public void | oadLogoFron(String fil enanme) {
upl oad(fil enane).to(l ogoFi el d);
}

}

8.7. Using Fluent Matcher expressions

When writing acceptance tests, you often find yourself expressing expectations about individual
domain objects or collections of domain objects. For example, if you are testing a multi-criteria search
feature, you will want to know that the application finds the records you expected. Y ou might be able
to do thisin avery precise manner (for example, knowing exactly what field values you expect), or
you might want to make your tests more flexible by expressing the ranges of values that would be
acceptable. Thucydides provides afew features that make it easier to write acceptance tests for this
sort of case.

In the rest of this section, we will study some examples based on tests for the Maven Central search
site (see Figure 8.1, “The results page for the Maven Central search page”). This site lets you search
the Maven repository for Maven artifacts, and view the details of a particular artifact.

Figure 8.1. Theresults pagefor the Maven Central search page

]

(_/) Opens the search page ' SUCCESS 0 ms

(_/) Searches for: Thucydides ' SUCCESS 0 ms

@ IShquIId Setal_alr‘Eilﬁacts where: {Artifactld is 'thucydides',Groupld is EEHET SUCCESS olns
net.thucydides'}

We will use some imaginary regression tests for this site to illustrate how the Thucydides matchers
can be used to write more expressive tests. The first scenario we will consider is ssmply searching for
an artifact by name, and making sure that only artifacts matching this name appear in the results list.
We might express this acceptance criteriainformally in the following way:

» Givethat the developer is on the search page,
» And the developer searches for artifacts called Thucydides
» Then the developer should see at least 16 Thucydides artifacts, each with aunique artifact I1d

In JUnit, a Thucydides test for this scenario might look like the one:

i mport static net.thucydi des. core. mat chers. BeanMat chers.the _count;
i mport static net.thucydi des. core. mat chers. BeanMat chers. each

45

Defining Page Objects

i mport static net.thucydi des. core. mat chers. BeanMat chers. t he;
i mport static org. hancrest. Mat chers. gr eat er ThanOr Equal To;

i mport static org. hancrest. Matchers.is;

i mport static org. hancrest. Matchers. startsWt h;

@unW t h(Thucydi desRunner . cl ass)
public class WhenSearchi ngForArtifacts {

@managed
WebDri ver driver;

@mnagedPages(defaul tUl = "http://search. maven. org")
publ i c Pages pages;

@5t eps
publ i c Devel oper St eps devel oper

@rest
public void should find_ the right_nunber_ of artifacts() {
devel oper . opens_t he_search_page();
devel oper. searches_for (" Thucydi des") ;
devel oper . shoul d_see_artifacts_where(the("Goupld", startsWth("net.thucydi des")
each("Artifactld").isDfferent(),
t he_count (i s(great er ThanOr Equal To(16))));

}

Let’s see how the test in this classisimplemented. The
shoul d_find_t he_right _nunmber _of _artifacts() test could be expressed as follows:

1. When we open the search page
2. And we search for artifacts containing the word Thucydides

3. Then we should see alist of artifacts where each Group ID starts with "net.thucydides”, each
Artifact ID is unique, and that there are at least 16 such entries displayed.

The implementation of these stepsisillustrated here:

i mport static net.thucydi des. core. mat chers. BeanMat cher Asserts. shoul dvat ch
public class Devel oper St eps extends Scenari oSt eps {

publ i ¢ Devel oper St eps(Pages pages) {
super (pages) ;
}

@t ep

public void opens_the search_page() {
onSear chPage() . open() ;

}

@t ep

public void searches for(String search _terns) {
onSear chPage() . enter _search_terns(search_terns);
onSear chPage().starts_search();

46

Defining Page Objects

}

@t ep

public void shoul d_see artifacts_where(BeanMatcher... matchers) {
shoul divat ch(onSear chResul t sPage() . get Sear chResul t s(), matchers);

}

private SearchPage onSear chPage() ({
return get Pages().get (SearchPage. cl ass) ;
}

private SearchResul t sPage onSear chResul t sPage() {
return get Pages().get (SearchResul t sPage. cl ass);
}

}

The first two steps are implemented by relatively simple methods. However the third step is more
interesting. Let’slook at it more closely:

@t ep

public void shoul d _see artifacts_where(BeanMatcher... matchers) {
shoul divat ch(onSear chResul t sPage() . get Sear chResul t s(), matchers);

}

Here, we are passing an arbitrary number of expressions into the method. These expressions actually
matchers, instances of the BeanMatcher class. Not that you usually have to worry about that

level of detail - you create these matcher expressions using a set of static methods provided in the
BeanMatchers class. So you typically would pass fairly readable expressions liket he(" Gr oupl d",
startsWth("net.thucydides")) oreach("Artifactld").isDifferent().

The shoul dvat ch() method from the BeanM atcherAsserts class takes either a single Java object, or a
collection of Java objects, and checks that at |east some of the objects match the constraints specified
by the matchers. In the context of web testing, these objects are typically POJOs provided by the Page
Object to represent the domain object or objects displayed on a screen.

There are anumber of different matcher expressions to choose from. The most commonly used
matcher just checks the value of afield in an object. For example, suppose you are using the domain
object shown here:

public class Person {
private final String firstNang;
private final String |astNaneg;

Person(String firstName, String |astNanme) {

this.firstName = firstNane;
this. |l ast Nane = | ast Nane;

}

public String getFirstNanme() {...}

public String getLastNane() {...}
}

Y ou could write atest to ensure that alist of Persons contained at |east one person named "Bill" by
using the "the" static method, as shown here:

Li st <Person> persons = Arrays. asLi st(new Person("Bill", "Cddie"), new Person("Tint,

47

Defining Page Objects

shoul divat ch(persons, the("firstName", is("Bill"))

The second parameter in the the() method is a Hamcrest matcher, which gives you a great deal of
flexibility with your expressions. For example, you could aso write the following:

Li st <Per son> persons = Arrays. asLi st(new Person("Bill", "Oddie"), new Person("Tini,

shoul divat ch(persons, the("firstNane", is(not("Tinm'))));
shoul divat ch(persons, the("firstNanme", startsWth("B")));

Y ou can also pass in multiple conditions:

Li st <Per son> persons = Arrays. asLi st(new Person("Bill", "Oddie"), new Person("Tint,
shoul divat ch(persons, the("firstName", is("Bill"), the("lastNane", is("CQddie"));

Thucydides also provides the DateMatchers class, which lets you apply Hamcrest matches to standard
java Dates and JodaTi me DateTimes. The following code samplesillustrate how these might be used:

Dat eTi me j anuarylst 2010 = new Dat eTi ne(2010, 01, 01, 12, 0) . t oDat e() ;
Dat eTi mre may31st 2010 = new Dat eTi ne(2010, 05, 31, 12,0) . t oDat e() ;

t he(" purchaseDate", isBefore(januarylst2010))

t he(" purchaseDate", isAfter(januarylst2010))

t he(" purchaseDate", isSanmeAs(januarylst2010))
the("purchaseDate", isBetween(januarylst2010, may31st2010))

Y ou sometimes also need to check constraints that apply to all of the elements under consideration.
The simplest of these isto check that all of the field values for a particular field are unique. You can
do thisusing the each() method:

shoul divat ch(persons, each("l ast Nane").isDifferent())

Y ou can also check that the number of matching elements corresponds to what you are expecting. For
example, to check that there is only one person who's first nameis Bill, you could do this:

shoul divat ch(persons, the("firstNane", is("Bill"), the_count(is(1)));

Y ou can aso check the minimum and maximum values using the max() and min() methods. For
example, if the Person class had aget Age() method, we could ensure that every person isover 21 and
under 65 by doing the following:

shoul divat ch(persons, m n("age", greater ThanO Equal To(21)),
max("age", |essThanOr Equal To(65)));

These methods work with normal Java objects, but also with Maps. So the following code will also
work:

Map<String, String> person = new HashMap<String, String>();
person. put ("firstNanme", "Bill");
per son. put ("Il ast Nane", "CQddie");

Li st <Map<String, Stri ng>> persons = Arrays. asLi st (person);
shoul divat ch(persons, the("firstName", is("Bill"))

The other nice thing about this approach is that the matchers play nicely with the Thucydides reports.
So when you use the BeanMatcher class as a parameter in your test steps, the conditions expressed

48

Defining Page Objects

in the step will be displayed in the test report, as shown in Figure 8.2, “Conditional expressions are
displayed in the test reports”.

Figure 8.2. Conditional expressions are displayed in thetest reports

]

(_/) Opens the search page ' SUCCESS 0 ms

‘(_/) Searches for: Thucydides ' SUCCESS 0 ms

(Y) lShouIld see art‘ilf‘acts where: {Artifactld is 'thucydides',Groupld is Y SUCCESS @ e
net.thucydides'}

There are two common usage patterns when building Page Objects and steps that use this sort

of matcher. Thefirst isto write a Page Object method that returns the list of domain objects (for
example, Persons) displayed on the table. For example, the getSearchResults() method used in the
should_see artifacts where() step could be implemented as follows:

public List<Artifact> getSearchResults() {
Li st <WebEl enent > rows = resultTabl e. fi ndEl ements(By. xpath(".//tr[td]"));
List<Artifact> artifacts = new ArraylLi st<Artifact>();
for (WebEl enent row : rows) {
Li st <WebEl enent > cells = row. fi ndEl enent s(By. tagNanme("td"));
artifacts.add(new Artifact(cells.get(0).getText(),
cells.get(1).getText(),
cells.get(2).getText()));

}

return artifacts;

}

The second isto access the HTML table contents directly, without explicitly modelling the data
contained in the table. This approach is faster and more effective if you don’'t expect to reuse the
domain object in other pages. We will see how to do this next.

8.7.1. Working with HTML Tables

Since HTML tables are still widely used to represent sets of data on web applications, Thucydides
comes the HtmlITable class, which provides anumber of useful methods that make it easier to write
Page Objects that contain tables. For example, the rowsFrom method returns the contents of an
HTML table asalist of Maps, where each map contains the cell values for arow indexed by the
corresponding heading, as shown here:

i mport static net.thucydi des. core. pages. conponents. Ht nl Tabl e. r owsFr om
public class SearchResul t sPage extends Page(bject {

WebEl enent resul t Tabl e;

49

Defining Page Objects

publ i c SearchResul t sPage(VebDriver driver) {
super (driver);

}

public List<Map<String, String>> getSearchResults() ({
return rowsFrom(resul t Tabl e) ;

}
}
Thissavesalot of typing - our get Sear chResul t s() method now looks like this:

public List<Map<String, String>> getSearchResults() {
return rowsFron(result Tabl e);

}

And since the Thucydides matchers work with both Java objects and Maps, the matcher expressions
will be very similar. The only difference is that the Maps returned are indexed by the text values
contained in the table headings, rather than by java-friendly property names.

Y ou can also read tables without headers (i.e., <th> elements) by specifying your own headings using
thewi t hCol uims method. For example:

Li st <Map<Cbj ect, String>> tabl eRows =
Ht m Tabl e. wi t hCol umms("Fi rst Nane","Last Nanme", "Favorite Col our")
. readRowsFr on(page. t abl e_wi t h_no_headi ngs) ;

Y ou can also use the Html Table class to select particular rows within atable to work with. For
example, another test scenario for the Maven Search page involves clicking on an artifact and
displaying the details for that artifact. The test for this might ook something like this:

@est
public void clicking on_artifact shoul d di spl ay _detail s _page() {
devel oper. opens_t he search_page();
devel oper. searches_for (" Thucydi des");
devel oper. open_artifact where(the("Artifactld", is("thucydides")),
the(" G oupld", is("net.thucydides")));

devel oper. shoul d see artifact details where(the("artifactld", is("thucydides")),
t he("groupld", is("net.thucydides"))

}

Now the open_artifact where() method needs to click on a particular row in the table. This step looks
likethis:

@t ep
public void open_artifact_where(BeanMatcher... matchers) ({
onSear chResul t sPage() . cl i ckOnFi r st Rowvat chi ng(mat chers) ;

}

So we are effectively delegating to the Page Object, who does the real work. The corresponding Page
Object method looks like this:

i mport static net.thucydi des. core. pages. conponents. Ht ml Tabl e. fi |l t er Rows;

public void clickOnFirst Rowvat chi ng(BeanMat cher... matchers) {
Li st <WebEl enent > mat chi ngRows = filterRows(resultTabl e, matchers);

50

Defining Page Objects

WebEl enent t ar get Row = mat chi ngRows. get (0) ;

WebEl enment detail sLink = target Row. fi ndEl enent (By. xpat h(".//a[contai ns(@ref,"’

det ai | sLi nk. click();
}

The interesting part here isthe first line of the method, where we use the filterRows() method. This
method will return alist of WebElements that match the matchers you have passed in. This method
makes it fairly easy to select the rows you are interested in for special treatment.

8.8. Running several steps using the same
page object

Sometimes, querying the browser can be expensive. For example, if you are testing tables with
large numbers of web elements (e.g. aweb element for each cell), performance can be slow, and
memory usage high. Normally, Thucydides will requery the page (and create a new Page Object)
each timeyou call Pages. get () Or Pages. current PageAt () . If you are certain that the page will
not change (i.e., that you are only performing read-only operations on the page), you can use the
onSamePage() method of the ScenarioSteps class to ensure that subsequent callsto Pages. get () or
Pages. cur r ent PageAt () will return the same page object:

@unW t h(Thucydi desRunner . cl ass)
public class WenbDi spl ayi ngTabl eContents {

@managed
public WebDriver webdriver;

@mnagedPages(defaul tUl = "http://my.web.site/index. htm ")
publ i c Pages pages;

@5t eps
publ i c DenpSiteSteps steps;

@rest

public void the user_opens_anot her page() {
steps. navigate to page with_a large_ table();
st eps. onSanePage(DenpSi t eSt eps. cl ass) . check_row(1) ;
st eps. onSanePage(DenpSi t eSt eps. cl ass) . check_row 2) ;
st eps. onSanePage(DenpSi t eSt eps. cl ass) . check_row 3) ;

}

8.9. Switching to another page

A method, switchToPage() is provided in PageObject class to make it convenient to return a new
PageObject after navigation from within a method of a PageObject class. For example,

@efaultUl ("http://mil.acne.con |l ogin. htm ")
public class Enmmil Logi nPage extends Page(bj ect ({

public void forgot Password() {

f or got Passwor d. cl i ck();

51

ar

Defining Page Objects

For got Passwor dPage f or got Passwor dPage = t hi s. swi t chToPage(For got Passwor dPage. cl a
f or got Passwor dPage. open() ;

52

Chapter 9. Advanced JIRA Integration

Thucydides provides tight integration with JIRA, though an extensible plugin architecture. Y ou can
store requirementsin JIRA, and associate the automated tests with this requirements, so that the
requirements defined in JIRA appear in the Thuydides reports. If you are using the JJIRA Zephyr
plugin to manage manual tests, you can also read manual test results from Zephyr and include themin
your Thucydides reports.

9.1. JIRA Integration plugins

A number of Thucydides pluginsfor JIRA are available for different JRA configurations. A
Requirements plugin implements the Requi r enment sTagPr ovi der interface, and helps Thucydides
retrieve alist of project requirements and associate these requirements with test results.

There are several plugins available, that are used for different purposes. All of the JIRA plugins use
the @I ssue annotation (or equivalent) to associate executed tests with arequirement defined in JIRA.
In addition to using them out-of-the-box, the source code for the JRA Thucydides plugins can be
used to write your own custom integration plugins for JIRA or other systems.

Thucydides JIRA plugins

* thucydides-jira-plugin: A client library for the JRA RESTful interface. Thislibrary is used by the
other plugins, and is not usually used directly unless you want to write your own JIRA integration

plugin.

* thucydides-jira-requirements-provider: Reads the requirements structure from the Epics and Stories
in JRA. It reads Epic cards as the top-level requirements and Story cards underneath the Epics. It
also reads the versions defined in the JIRA project, using the Fix Version field to associated test
results with particular versions. Many organizations customize their JIRA card structure, so this
pluginisagood place to start if you have a more specific card organization.

* thucydides-jira-customfield-requirements-provider: Y ou use this plugin to define requirements and
versionsin custom JRA fields..

* thucydides-structure-plugin-requirements-provider This plugin provides integration with the JIRA
structure plugin.

Y ou should not include a dependency on more than one of the JIRA requirements provider plugins.

A few configuration options are used for al of the plugins:

jira.url=http://ny.jira.server
jira.project=DEMD
jira.usernane=scott
jira.password=tiger

9.2. Reporting on versions

Thucydides lets you report on test results from several different points of view, including
requirements (epics, stories, features, capabilites etc.) and versions. Y ou can deactivate this reporting
using thet hucydi des. report. show. r el eases property inyour t hucydi des. properti es file e.g.

53

Advanced JRA Integration

t hucydi des. report.show. rel eases = fal se

9.3. Using JIRA versions

By default, Thucydides will read version details from the Releasesin JIRA. Test outcomes will be
associated with a particular version using the "Fixed versions' field.

JRA uses aflat version structure - you can’t have for example releases that are made up of a number
of sprints. Thucydides |ets you organize these in a hierarchical structure based on a simple naming
convention. By default, Thucydides uses "release” as the highest level release, and either "iteration” or
"sprint”" as the second level. For example, suppose you have the the following list of versionsin JJRA

e Releasel

[teration 1.1

[teration 1.2

Release 2

Release 3

Thiswill produce Release reports for Release 1, Release 2, and Release 3, with Iteration 1.2 and
Iteration 1.2 appearing underneath Release 1. The reports will contain the list of requirements and test
outcomes associated with each release.

Y ou can customize the names of the types of release usinge thet hucydi des. r el ease. t ypes
property, e.g.

t hucydi des. rel ease. t ypes=ni | est one, rel ease, version

9.4. Retrieving manual test results from
Zephyr

Zephyr isa JIRA plugin that lets you store and manage manual test casesin JJRA. To get a complete
picture of how well an application has been tested, we need to take into account both automated

and manual test results. To let you do this with Zephyr, Thucydides provides an Adaptor to import
data from Zephyr. This Adaptor reads test cases from Zephyr and converts them into manual
Thucydides test outcomes, stored in the Thucydides working directory (usually t ar get / si t e/

t hucydi des). Thucydides can then include them in the aggregate reports when you run nvn

t hucydi des: aggr egat e.

Y ou can integrate with Zephyr simply by adding a dependency on thet hucydi des-j i ra- zephyr -
adapt or inyour pom xm file.

<dependency>
<gr oupl d>net . t hucydi des. pl ugi ns. j i ra</ groupl d>
<artifactld>t hucydi des-jira-zephyr-adaptor</artifactld>
<ver si on>0. 9. 220</ ver si on>

</ dependency>

54

Advanced JRA Integration

Y ou also need to declare the adaptor in your t hucydi des. properti es file:

t hucydi des. adapt or s. zephyr =net . t hucydi des. pl ugi ns. j i ra. adapt or s. Zephyr Adapt or

Thucydides will now let you use it to import the test results from Zephyr, using the
t hucydi des: i mport command. Y ou need to providethei nport. f or mat parameter to tell
Thucydides what adaptor you want to use:

$ thucydi des:inport -Dinport.formt=zephyr

The manual test results will then appear in the reports, as shown here:

Figure 9.1. Manual test resultsimported from Zephyr

‘ Test Count || Weighted Tests ‘

Total number of tests that pass, fail, or are pending.

Test Result Summary
Test Type Total Pass ¥ Fail wp Pending &

Automated 8 6 0 2

Manual 6 2 0 4

Total 14 8 0 5]

Related tags

Capabilities

Cats Files 7s%

Input Receipt 50% _:l

Monitoring 75% _:l

Scheduling 50% _:l

Features

Create Scheduling 50% _:l

Job Execution Monitoring Job Execution 0% |:|

Search

Logging Input Receipt 66 .?%_:I

Store Input Rtgs Create Format 33.3%-:|
M| Passing M Passing {manual)[~|Pending Transmission Manitoring Transmission IGG%_

Pending (manual) (M| Failing M| Errors Dashboard

Transmission Manitoring Transmissian IGG%_
Search

Tests

Show entries
Search: I

seconds

Finding transmissions (PAV-17) 3 0.02
& ‘I-I Manual test - Do even more tests (PAV-10) (PAV-10, PAV-4) 0 - 0
B ifl Manual test - Do even more tests (PAV-8) (PAV-3, PAV-9) 0 - 0
= il-l Manual test - Do some other tests (PAV-7) (PAV-2, PAV-F) 0 - 0
b I R I, P e he—h_ FTWARS M FMVARS TR MARS A n s

55

Chapter 10. Spring Integration

If you are running your acceptance tests against an embedded web server (for example, using Jetty),

it can occasionally be useful to access the service layers directly for fixture or infrastructure-rel ated
code. For example, you may have a scenario where a user action must, as a side effect, record an audit
log in atable in the database. To keep your test focused and simple, you may want to call the service
layer directly to check the audit logs, rather than logging on as an administrator and navigating to the
audit logs screen.

Spring provides excellent support for integration tests, via the SpringJUnit4ClassRunner test runner.
Unfortunately, if you are using Thucydides, thisis not an option, as atest cannot have two runners
at the same time. Fortunately, however, thereis a solution! To inject dependencies using a Spring
configuration file, you just need to include the Thucydides Springlntegration rule in your test class.
Y ou instantiate this variable as shown here:

@Rul e
public Springlntegration springlntegration = new Springlntegration();

Then you use the @ont ext Conf i gur at i on annotation to define the configuration file or files to use.
The you can inject dependencies as you would with an ordinary Spring integration test, using the
usual Spring annotations such as @Autowired or @esour ce. For example, suppose we are using the
following Spring configuration file, called ‘ config.xml’:

<beans>
<bean i d="wi dget Servi ce" class="net.thucydides.junit.spring. Wdget Service">
<property name="nane"><val ue>W dget s</ val ue></ pr operty>
<property nane="quot a"><val ue>1</val ue></ property>
</ bean>
<bean i d="gi znoServi ce" class="net.thucydides.junit.spring.G znpService">
<property name="nane"><val ue>G znos</val ue></ property>
<property name="w dget Servi ce"><ref bean="wi dget Servi ce" /></property>
</ bean>
</ beans>

We can use this configuration file to inject dependencies as shown here:

@unW t h(Thucydi desRunner . cl ass)
@cont ext Configuration(locations = "/config.xm")
public class Wenl nj ecti ngSpri ngDependenci es {

@managed
WebDri ver driver;

@managedPages(defaul t Ul = "http://ww. googl e. cont')
publ i c Pages pages;

@Rul e

public Springlntegration springlntegration = new Springlntegration();

@\ut owi r ed
public G znbServi ce gi znbServi ce

@est
public void shoul dl nst anci at eG znpServi ce() {
assert That (gi znoServi ce, is(not(nullValue())));

56

Spring Integration

}

@rest
public void shoul dl nst anci at eNest edSer vi ces() {

assert That (gi znoSer vi ce. get W dget Servi ce(), is(not(nullValue())));
}

}

Other context-related annotations such as @i rt i esCont ext will al'so work asthey would in a
traditional Spring Integration test. Spring will create a new ApplicationContext for each test, but it
will use asingle ApplicationContext for all of the methods in your test. If one of your tests modifies
an object in the ApplicationContext, you may want to tell Spring so that it can reset the context for the
next test. You do thisusing the @i r t i esCont ext annotation. In the following test case, for example,
the tests will fail without the @i rt i esCont ext annotation:

@unW t h(Thucydi desRunner . cl ass)
@cont ext Configuration(locations = "/spring/config.xm")
public class WhenWor ki ngWt hDi rt yCont exts {

@managed
WebDri ver driver;

@managedPages(defaul tUrl = "http://ww. googl e. com")
publ i c Pages pages;

@rul e
public Springlntegration springlntegration = new Springlntegration();

@\ut owi r ed
public G znbServi ce gi znbServi ce;

@est

@i rti esCont ext

public void shoul dNot BeAf f ect edByTheQt her Test () {
assert That (gi znoServi ce. get Nane(), is("G znps"));
gi znmoSer vi ce. set Nanme(" New G znps") ;

}

@est

@i rti esCont ext

public voi d shoul dNot BeAf f ect edByTheQt her Test Ei t her () {
assert That (gi znoServi ce. get Nane(), is("G znps"));
gi znmoSer vi ce. set Nanme(" New G znps") ;

57

Chapter 11. Thucydides Report
Configuration

To generate the full Thucydides reports, run mvn thucydides.aggregate. For this to work, you need to
add the right plugins group to your settings.xml file, as shown here:

<settings>
<pl ugi nGr oups>
<pl ugi nGr oup>net . t hucydi des. naven. pl ugi ns</ pl ugi nGr oup>

</ pl ugi nGr oups>
</settings>

Y ou can run this in the same command as your tests by setting the maven.test.failure.ignore property
to true: if you don’t do this, Maven will stop if any errors occur and not proceed to the report
generation:

$ nvn clean verify thucydi des: aggregate -Dnaven.test.failure.ignore=true

Y ou can aso integrate the Thucydides reports into the standard Maven reports. If you are using
Maven 2, just add the Thucydides Maven plugin to the reporting section:

<reporting>
<pl ugi ns>
<pl ugi n>
<gr oupl d>net . t hucydi des. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-t hucydi des-pl ugi n</artifactld>
<ver si on>${t hucydi des. ver si on} </ ver si on>
</ pl ugi n>
</ pl ugi ns>
</reporting>

If you are using Maven 3, you need to add the Maven Thucydides report to the maven-site-plugin
configuration as shown here:

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>naven-site-plugin</artifactld>
<ver si on>3. 0- bet a- 3</ ver si on>
<confi gurati on>
<report Pl ugi ns>
<pl ugi n>
<gr oupl d>net . t hucydi des. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-t hucydi des-pl ugi n</artifactld>
<ver si on>${t hucydi des. ver si on} </ ver si on>
</ pl ugi n>
</report Pl ugi ns>
</ configuration>
</ pl ugi n>
</ pl ugi ns>

58

Thucydides Report Configuration

</ bui | d>
To generate this report, run the mvn site command after running mvn verify, e.g.
$ mvn clean verify site

Thiswill produce a summary report in the generated Maven site documentation, with links to the
more detailed Thucydides reports:

Figure 11.1. Thucydidestest reportsin the Maven site

Project Documentation .
» Project Information ovewlew
* Project Reports

Thucydides Web

tests

BUIt by
maven

Dashboard

Features

Make widgets 2 4] 6
Sell widgets

-

Stories

Make big widgets 2] 2]
Make small widgets 4 0 4 1]
Sell widgets online 2 1 1 o]

59

Chapter 12. Converting existing xUnit,
specFlow and Lettuce test cases into
Thucydides report

With the Thucydides maven plugin added as described in the previous section, you can also import
existing xUnit, specflow [http://www.specflow.org/] and Lettuce [http://lIettuce.it/index.html] test
cases into a Thucydides report. For this, add the sour ce directory of test cases and f or mat (Xunit,
specflow or lettuce) parameters to the plugin configuration.

<reporting>
<pl ugi ns>
<pl ugi n>
<gr oupl d>net . t hucydi des. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-t hucydi des-pl ugi n</artifactld>
<ver si on>${t hucydi des. ver si on} </ ver si on>
<confi gurati on>
<sour ce>sr c</ sour ce>
<f or mat >xuni t </ f or nat >
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</reporting>

There are also a number of ways you can fine-tune the reports. Y ou can fine-tune the tag
categories that appear in the Related Tags section by using the dashboar d. t ag. | i st or

dashboar d. excl uded. t ag. | i st. Thet hucydi des. report. show. manual . t est s property letsyou
show or hide manual test results. And you can initially hide the pie chart by setting show. pi e. charts
to false (users can till display it themselves).

60

http://www.specflow.org/
http://www.specflow.org/
http://lettuce.it/index.html
http://lettuce.it/index.html

Chapter 13. Running Thucydides tests
from the command line

Y ou typically run Thucydides as part of the build process (either locally or on a Cl server). In addition
to thewebdri ver. dri ver option discussed about, you can also pass a number of parametersin as
system properties to customize the way the tests are run. The full list is shown here:

properties. Absolute path of the property file where Thucydides system property defaults are
defined. Defaultsto ~/ t hucydi des. properti es

webdriver.driver: What browser do you want your tests to run in: firefox, chrome or iexplorer.
Basic support for iPhone and Android driversis also available.

webdriver.base.url: The default starting URL for the application, and base URL for relative paths.
webdriver.remote.url: The URL to be used for remote drivers (including a selenium grid hub)

phantomjs.webdriver.port What port to run PhantomJS on (used in conjunction with
webdriver.remote.url to register with a Selenium hub, e.g. -Dphantomjs.webdriver=5555 -
Dwebdriver.remote.url=http://|ocalhost:4444

webdriver.remote.driver: Thedriver to be used for remote drivers

webdriver .timeouts.implicitlywait: How long webdriver waits for elements to appear by default,
in milliseconds.

thucydides.home: The home directory for Thucydides output and datafiles - by default,
SUSER_HOME/.thucydides

thucydides.outputDirectory: Where should reports be generated.

thucydides.only.save.failing.screenshots : Should Thucydides only store screenshots for failing
steps? This can save disk space and speed up the tests alittle. It is very useful for data-driven
testing. This property is now deprecated. Uset hucydi des. t ake. scr eenshot s instead.

thucydides.ver bose.scr eenshots : Should Thucydides take screenshots for every clicked button
and every selected link? By default, a screenshot will be stored at the start and end of each step.

If thisoption is set to true, Thucydides will record screenshots for any action performed on a
WebElementFacade, i.e. any time you use an expression like element(...).click(), findBy(...).click()
and so on. Thiswill be overridden if the ONLY_SAVE_FAILING_SCREENSHOTS option is set
to true. @Deprecated This property is still supported, but thucydides.take.screenshots provides
more fine-grained control.

thucydides.take.screenshots : Set this property to have more finer control on how screenshots are
taken. This property can take the folowing values:

* FOR_EACH_ACTION : Similar tot hucydi des. ver bose. screenshot s
» BEFORE_AND _AFTER_EACH_STEP,

« AFTER_EACH_STEP, and

61

Running Thucydides tests
from the command line

* FOR_FAILURES: Similar tot hucydi des. onl y. save. fai | i ng. screenshot s

thucydides.verbose.steps : Set this property to provide more detailed logging of
WebElementFacade steps when tests are run.

thucydides.report.show.manual.tests: Show statistics for manual testsin the test reports.
thucydides.report.show.r eleases. Report on rel eases.

thucydides.restart.browser.frequency: During data-driven tests, some browsers (Firefox in
particular) may slow down over time due to memory leaks. To get around this, you can get
Thucydidesto start anew browser session at regular intervals when it executes data-driven tests.

thucycides.step.delay: Pause (in ms) between each test step.

untrusted.certificates: Useful if you are running Firefox tests against an HTTPS test
server without avalid certificate. Thiswill make Thucydides use a profile with the
AssumeUntrustedCertificatel ssuer property set.

thucydides.timeout: How long should the driver wait for elements not immediately visible.

thucydides.browser .width and thucydides.browser .height: Resize the browser to the specified
dimensions, in order to take larger screenshots. This should work with Internet Explorer and
Firefox, but not with Chrome.

thucydides.resized.image.width : Value in pixels. If set, screenshots are resized to this size. Useful
to save space.

thucydides.keep.unscaled.screenshots: Set tot r ue if you wish to save the original unscaled
screenshots. Thisisset to f al se by defaullt.

thucydides.store.html.source : Set this property tot r ue to save the HTML source code of the
screenshot web pages. Thisisset to f al se by default.

thucydides.issue.tracker.url: The URL used to generate links to the issue tracking system.

thucydides.activate.firebugs: * Activate the Firebugs and FireFinder plugins for Firefox when
running the WebDriver tests. Thisis useful for debugging, but is not recommended when running
the tests on a build server.

thucydides.batch.strategy : Defines batch strategy. Allowed values - DIVIDE_EQUALLY
(default) and DIVIDE_BY_TEST_COUNT. DIVIDE_EQUALLY will simply divide the tests
equally across all batches. This could be inefficient if the number of tests vary alot between test
classes. A DIVIDE_BY_TEST_COUNT strategy could be more useful in such cases as this will
create batches based on number of tests.

thucydides.batch.count: If batch testing is being used, thisis the size of the batches being
executed.

thucydides.batch.number :If batch testing is being used, thisis the number of the batch being run
on this machine.

62

Running Thucydides tests
from the command line

 thcydides.reports.show.step.details : Displays detailed step resultsin the test result tables. This
property is set to false by default.

 thucydides.use.unique.browser : Set thisto run all web testsin asingle browser.

 thucydides.locator .factory : Set this property to override the default locator factory with another
locator factory (for ex., AjaxElementL ocatorFactory or DefaultElementlL ocatorFactory). By default,
Thucydides uses a custom locator factory called DisplayedElementL ocatorFactory.

» thucydides.driver.capabilities: A set of user-defined capabilitiesto be used to configure the
WebDriver driver. Capabilities should be passed in as a semi-colon-separated list of key:value
pairs, e.g. "build:build-1234; max-duration:300; single-window:true; tags:[tagl,tag2,tag3]"

* thucydides.native.events: Activate and deactivate native events for Firefox by setting this
property tot rue or f al se.

* security.enable java: Set thisto true to enable Java support in Firefox. By default, thisis set to
false asit slows down the web driver.

 thucydides.test.requirements.basedir : The base folder of the sub-module where the jBehave
stories are kept. It is assumed that this directory contains sub folders src/test/resources. If this
property is set, the requirements are read from src/test/resources under this folder instead of the
classpath or working directory. This property is used to support situations where your working
directory is different from the requirements base dir (for example when building a multi-module
project from parent pom with requirements stored inside a sub-module)

 thucydides.proxy.http: HTTP Proxy URL configuration for Firefox and PhantomJS
 thucydides.proxy.http_port: HTTP Proxy port configuration for Firefox and PhantomJS
 thucydides.proxy.type: HTTP Proxy type configuration for Firefox and PhantomJS
 thucydides.proxy.user: HTTP Proxy username configuration for Firefox and PhantomJS

* thucydides.proxy.password: HTTP Proxy password configuration for Firefox and PhantomJS
» chrome.switches: Arguments to be passed to the Chrome driver, separated by commas.

An example of using these parametersis shown here:
$ nvn test -Dwebdriver.driver=iexplorer -Dwebdriver.base.url=http://myapp. stagi ng. acne. ct

Thiswill run the tests against the staging server using Internet Explorer.

» webdriver firefox.profile: The path to the directory of the profile to use when starting firefox. This
defaults to webdriver creating an anonymous profile. Thisis useful if you want to run the web tests
using your own Firefox profile. If you are not sure about how to find the path to your profile, look
here: http://support.mozilla.com/en-US/kb/Profiles. For example, to run the default profile on a
Mac OS X system, you would do something like this:

$ nvn test -Dwebdriver.firefox.profile=/Users/johnsmart/Library/Application\ Support/Fir

On Windows, it would be something like:

63

http://support.mozilla.com/en-US/kb/Profiles

Running Thucydides tests
from the command line

C:\ Proj ects\nyproj ect>nvn test -Dwebdriver.firefox.profile=C: \Users\John Smart\ AppDat a\ R
« firefox.preferences: A semicolon separated list of Firefox configuration settings. For ex.,

- Df i r ef ox. pref erences="br owser. downl oad. f ol der Li st =2; br owser . downl oad. manager . showhenSt

Integer and boolean values will be converted to the corresponding types in the Firefox preferences; all
other values will be treated as Strings. Y ou can set a boolean value to true by simply specifying the
property name, e.g. - Df i r ef ox. pr ef erences=app. updat e. si | ent.

A complete reference to Firefox’ s configuration settings is given here [http://kb.mozillazine.org/
Firefox_: FAQs : About:config_Entries].

 thucydides.history: The directory in which build history summary datais stored for each project.
Each project hasit’s own sub-folder within this directory. Defaults to ~./thucydides.

If you want to set default values for some of these properties for your own development environment
(e.g. to always activate the Firebugs plugin on your development machine), create afile called

t hucydi des. properti es inyour home directory (or any property file as defined by setting the
system property properti es), and set any default values here. These values will still be overridden by
any values defined in the environment variables. An example is shown here:

t hucydi des. acti vate. firebugs = true
t hucydi des. browser. wi dth = 1200

13.1. Providing your own Firefox profile

If you need to configure your own customized Firefox profile, you can do this by using the
Thucydidies.useFirefoxProfile() method before you start your tests. For example:

@Bef or e
public void setupProfile() {
FirefoxProfile nyProfile = new FirefoxProfile();
nmyProfil e. set Preference("network. proxy. socks_port", 9999);
nmyProfil e. set Al waysLoadNoFocusLi b(true);
nyProf i | e. set Enabl eNat i veEvent s(true);
Thucydi des. useFi ref oxProfil e(myProfile);

}

@est
public void aTest Usi ngMyCustonProfile() {...}

» tags. Comma separated list of tags. If provided, only jUnit classes and/or methods with tagsin this
list will be executed. For example,

nvn verify -Dtags="iteration:|1"
nvn verify -Dtags="color:red, flavor:strawberry"

* narrative.format: Set this property to asciidoc to activate using Asciidoc [http://
www.methods.co.nz/asciidoc/] format in narrative text.

64

http://kb.mozillazine.org/Firefox_:_FAQs_:_About:config_Entries
http://kb.mozillazine.org/Firefox_:_FAQs_:_About:config_Entries
http://kb.mozillazine.org/Firefox_:_FAQs_:_About:config_Entries
http://www.methods.co.nz/asciidoc/
http://www.methods.co.nz/asciidoc/
http://www.methods.co.nz/asciidoc/

Chapter 14. Integrating with issue tracking
systems

14.1. Basic issue tracking integration

http://ny.jira. server/browse/ MYPRQIECT- { 0}

To do thisin Maven, you need to pass this system property to JUnit using the maven-surefire-plugin
as shown here:

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>
<versi on>2. 7. 1</ versi on>
<confi gurati on>
<syst enPr opertyVari abl es>
<t hucydi des. i ssue.tracker.url>http://my.jira.server/browse/ MYPRQJECT-{0}</th
</ syst enPropertyVari abl es>
</ configuration>
</ pl ugi n>

Thucydides also provides special support for the Atlassian JIRA issue tracking tool. If you provide the
jira.url system property instead of thet hucydi des. i ssue. tracker. url, you only need to provide
the base URL for your JIRA instance, rather than the full path:

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>
<versi on>2. 7. 1</ ver si on>
<confi gurati on>
<syst enPr opertyVari abl es>
<jira.url>http://nmy.jira.server</jira.url>
</ syst enPropertyVari abl es>
</ configuration>
</ pl ugi n>

Y ou need to provide the issue number. Y ou can place thisin the test title, prefixed by the # character.
For easyb tests, this just means mentioning the issue number (always starting with a# character)
somewhere in the scenario name. For JUnit tests, you use the @Title annotation as shown here:

@unW t h(Thucydi desRunner . cl ass)
public class Fixi ngAnl ssueScenari o {

@managed
public WebDri ver webdriver;

@vmanagedPages(defaul tUl = "http://ww. nysite.com')
publ i c Pages pages;

@3t eps

publ i ¢ Sanpl eScenari oSt eps st eps;

@ritle("Shopping cart should |l et users add multiple articles - fixes issues #123")

@est

65

Integrating with issue
tracking systems

public void shopping _cart_should | et users add multiple articles() {
steps.add_itemto _cart("nuts");
steps.add_itemto_cart("bolts");
steps. cart_shoul d_contai n("nuts", "bolts");

}

Another way to specify issuesin JUnit isto use the @l ssue or @I ssues annotations. Y ou can use the
@I ssue annotation to associate an individual test with a specific issue

@ ssue("#123")

@est

public void shopping cart_should | et users add multiple articles() {
steps.add_itemto cart("nuts");
steps.add_itemto _cart("bolts");
steps. cart_shoul d_contai n("nuts", "bolts");

}

Y ou can also place the @I ssue annotation at the class level, in which case the issue will be associated
with every test in the class:

@RunW t h(Thucydi desRunner . cl ass)
@ ssue("#123")
public class Fixi ngAnl ssueScenari o {

@managed
public WebDri ver webdriver;

@managedPages(defaul tUrl = "http://ww. nysite.com')
publ i c Pages pages;

@5t eps
publ i c Sanpl eScenari oSt eps st eps;

@est

public void shopping cart _should | et users add multiple articles() {
steps.add itemto cart("nuts");
steps.add itemto cart("bolts");
steps. cart_shoul d _contai n("nuts", "bolts");

}

@est
public void sone_other test() {

}
}

If atest needs to be associated with several issues, you can use the @I ssues annotation instead:

@ ssues({"#123", "#456"})
@est public void shopping cart_should | et users add multiple articles() {
steps.add itemto cart("nuts"); steps.add itemto cart("bolts");
steps.cart_shoul d _contai n("nuts", "bolts");

}

When you do this, issues will appear in the Thucydides reports with a hyperlink to the corresponding
issue in your issue tracking system.

Overriding the default reports directory

66

Integrating with issue
tracking systems

By default, Thucydides generatesit’ sreportsin thet ar get/ si t e/ t hucydi des directory. There are
acouple of waysto override this, if need be. First of all, if you are overriding the default Maven
output directory, you can override the <di r ect or y> element in the <bui | d> section of your pom xni
file. However, since the Maven Surefire plugin runs the tests in aforked JVM by default, you

will also need to passin the pr oj ect . bui | d. di rect ory property to the unit tests by using the
<syst enPr oper t yVar i abl es> configuration element, as shown here:

<bui | d>

<di rect ory>${ basedir}/buil d</directory>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifactld>nmaven-surefire-plugin</artifactld>
<ver si on>2. 11</ ver si on>
<confi gurati on>
<i ncl udes>
<i ncl ude>**/*Test Scenari o. j ava</i ncl ude>
</incl udes>
<syst enPr opertyVari abl es>
<proj ect. buil d.di rectory>${project.build.directory}</project. bui
</ syst enPropertyVari abl es>
</ configuration>
</ pl ugi n>
<pl ugi n>
<gr oupl d>net . t hucydi des. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-t hucydi des-pl ugi n</artifactld>
<ver si on>${t hucydi des. ver si on} </ ver si on>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Thiswill result in the Thucydides reports being generated in ‘build/site/thucydides’ instead of “target/
site/thucydides .

If you only want to override the Thucydides output directory, you can use the

t hucydi des. out put Di rect ory andt hucydi des. sour ceDi r ect ory properties, either in the
pom xni file, or from the commnd line. For example, the following properties will generate the
Thucydides reportsin the bui | d/ t hucydi des-r eport s directory:

<properties>
<t hucydi des. out put Di r ect ory>${ basedi r}/ bui | d/ t hucydi des-r eports</thucydi des. out put Di |
<t hucydi des. sour ceDi rect ory>${ basedi r}/ bui | d/ t hucydi des-r eport s</thucydi des. sour ceDi|
</ properties>

67

Chapter 15. Using Thucydides tags

Viewing test resultsis certainly useful, but, from arelease and deployment point of view, it isjust
scratching the surface. Even more interesting is the ability to view test resultsin terms of stories,
features, behaviors, scenarios, or whatever other categorizations you find useful.

Thucydides Tags provide a very flexible mechanism for categorizing and reporting on your test
results, which serve as an alternative to the Story/Feature structure described earlier. Y ou can decide
on an appropriate set of tag types (such as "feature”, "behavior”, "epic”, "scenario", "non-functional
requirement”, etc.), and then assign tags of the different types to your tests. To declare atag type, you
simply use atag of the specified type - it will then automatically appear in the Thucydides reports.

Y ou can assign atag manually to atest using the @v t hTag annotation:

@N t hTag(name="i nportant functionality", type = "functionality")
cl ass SomeTest Scenari oWt hTags ({

@rest
public void a_sinple_test case() {

}

@NV t hTag(nanme="si npl e story",type = "story")

@rest
public void should do_this() {

}
@rest

public void should do_that() ({

}
}

Note that tags can be assigned at the test or the class level. Tag names and types are free text -

15.1. Writing a Thucydides tags plugin

Thucydides tags are easy to integrate with other applications, such asissue tracking or agile project
management systems. In this section, we look at how to write a plugin that will let Thucydides
automatically assign tags to your tests, based on your specific requirements.

In Thucydides, tags are arbitrary tuples of String values (name and type), represented by the TagType
class. You can create atag using the TagTest . wi t hName() method, as shown here:

Test Tag speci al Feat ureTag = Test Tag. wi t hNane("speci al feature").andType("feature");

Any feature types you provide will be displayed as separate tabs at the top of the reports screen, and
will provide all of the usual aggregation and filtering features that come with the standard reports.

To define your own tags, you need to write your own tag provider, by implementing the TagProvider
interface, shown below:

public interface TagProvider {
Set <Test Tag> get TagsFor (fi nal Test Qut cone test Qutcone);
}

68

Using Thucydides tags

The unique method of thisinterface, get TagsFor () , takesaTest Qut come object, and returns the set
of tags associated with this test outcome. The Test Qut corre class provides a large number of fields
describing the test and it’ s results. For example, to obtain the list of the issues specified for this test
using the get | ssues() method. The following code is an example of atag provider that provides a
list of tags based on the test’ s associated issues (specified by the @ ssue and @ ssues annotations).

i mport ch. | anbdaj . function. convert. Converter;
i mport net.thucydi des. core. nodel . Test Qut cone;
i mport net.thucydi des. core. nodel . Test Tag;

i mport java.util. Set;

i mport static ch.l|anbdaj.Lanbda. convert;

public class |IssueBasedTagProvider inplenments TagProvi der {

public | ssueBasedTagProvi der () {
}

publ i c Set<Test Tag> get TagsFor (fi nal Test Qutcone testQutconme) {

Set <String> i ssues = testQutcone. getlssues();
return Sets. newHashSet (convert (i ssues, toTestTags()));

}

private Converter<String, String> toTestTags() ({
return new Converter<Object, TestTag>() {

@verride
public TestTag convert (String issue) {
String tagNane = get NaneFor Tag(i ssue);
String tagType = get TypeFor Tag(i ssue);
return Test Tag. wi t hNane(t agNane) . andType(tagType) ;

b
}

String get NameFor Tag(String issue) {...}
String get TypeFor Tag(String issue) {...}

}

Y ou also need to provide a service definition in the / META- | NF/ ser vi ces folder on the classpath,
so that Thucydides can register and use your plugin. A simple way to do thisisto create aMaven
project with afile called net . t hucydi des. core. stati stics. servi ce. TagProvi der inthesrc/
resour ces/ META- | NF/ sevi ces folder. Thisfile isatext file containing the fully-qualified name of
your tag provider, e.g.

com nyconpany. t hucydi des. MyThucydi desTagPr ovi der

Now just include the generated JAR file in your dependencies, and Thucydides will useit
automatically to include your custom tags in the reports.

15.2. Bi-directional JIRA integration

A common strategy for organizations using JIRA isto represent story cards, and/or the associated
acceptance criteria, as JIRA issues. It is useful to know what automated tests have been executed for a
given JIRA story card, and what story is being tested for a given test.

69

Using Thucydides tags

Y ou can add both of these features to your Thucydides project by using thet hucydi des-j i r a-
pl ugi n. First, you need to add the t hucydi des-j i r a- pl ugi n to your Maven dependencies. The
dependencies you will need (including the normal Thucydides ones) are listed here:

<dependency>
<gr oupl d>j uni t </ gr oupl d>
<artifactld>j unit-dep</artifactld>
<ver si on>4. 10</ ver si on>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>or g. hanctr est </ gr oupl d>
<artifactld>hancrest-all</artifactld>
<ver si on>1. 1</ ver si on>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>net . t hucydi des</ gr oupl d>
<artifactld>t hucydi des-junit</artifactld>
<ver si on>0. 6. 1</ ver si on>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>net . t hucydi des. easyb</ gr oupl d>
<artifactl|d>t hucydi des- easyb-pl ugi n</artifactld>
<ver si on>0. 6. 1</ ver si on>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>net . t hucydi des. pl ugi ns. j i ra</ groupl d>
<artifactld>t hucydi des-jira-plugin</artifactld>
<ver si on>0. 6. 1</ ver si on>
<scope>t est </ scope>

</ dependency>

<dependency>
<gr oupl d>or g. codehaus. gr oovy</ gr oupl d>
<artifactld>groovy-all</artifactld>
<ver si on>1. 8. 5</ ver si on>

</ dependency>

Note that the JIRA workflow integration needs Groovy 1.8.5 or higher to work properly.

You will aso need an sl f 4j implementation, e.g. ‘SIf4j-log4j12# (if you are using
Log4j) or ‘logback-classic’ (if you are using LogBack) (see http://www.slf4j.org/
codes.html#StaticL oggerBinder for more details). If you' re stuck, just add sif4j-simple:

<dependency>
<groupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-sinmple</artifactld>
<versi on>1. 6. 1</ ver si on>

</ dependency>

In Thucydides, you can refer to a JIRA issue by placing areference to the corresponding JIRA issue
number either in the name of the test (using the @Title annotation, for example), or, more simply, by
using the @I ssue or @I ssues annotation as shown here:

@unW t h(Thucydi desRunner . cl ass)

70

http://www.slf4j.org/codes.html#StaticLoggerBinder
http://www.slf4j.org/codes.html#StaticLoggerBinder

Using Thucydides tags

public class Sear chByKeywor dSt oryTest {

@mnaged(uni queSessi on = true)
public WebDriver webdriver;

@mnagedPages(defaul tUl = "http://ww. wi ki pedi a. com")
publ i c Pages pages;

@5t eps
publ i c EndUser St eps endUser;

@ ssue("#WKI - 1")

@rest
public void searching_by unanbi gui ous_keyword_shoul d_di spl ay_t he_correspondi ng_a

endUser.is_on_the_w ki pedi a_hone_page();
endUser . | ooks_up_cats();
endUser . shoul d_see_article with title("Cat - Wkipedia, the free encycl opedi

}

In this example, the test will be associated with issue WIKI-1.

Alternatively, you may want to associate an issue (such as a story card) with all of the storiesin atest
case by placing the @I ssue (or @I ssues) annotation at the class level:

@RunW t h(Thucydi desRunner . cl ass)
@ ssue("#WKI -1")
public class SearchByKeywor dSt oryTest {

@managed(uni queSessi on = true)
public WebDri ver webdriver;

@managedPages(defaul tUrl = "http://ww. w ki pedi a. cont")
publ i c Pages pages;

@5t eps
publ i c EndUser St eps endUser;

@est
public void searchi ng by unanbi gui ous_keyword _shoul d_di spl ay_t he _corr espondi

endUser.is_on_the_ w ki pedi a_hone_page();
endUser . | ooks _up cats();
endUser . shoul d_see_article with title("Cat - Wkipedia, the free encyclo

}

Thucydides can use these annotations to integrate with the issues in JJRA. The most ssmple JIRA
integration involves adding links to the corresponding JIRA issues in the Thucydides reports. To
activate this, you simply need to provide the jira.url command line option. Y ou do however need to
pass this option to JUnit using the maven-surefire-plugin, as shown here:

<bui | d>
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>

71

Using Thucydides tags

<ver si on>2. 10</ ver si on>

<confi gurati on>
<ar gLi ne>- Xmx1024nx/ ar gLi ne>
<syst enPr opertyVari abl es>

<jira.url>http://jira.acme.conx/jira.url >

</ syst enPropertyVari abl es>

</ confi guration>

</ pl ugi n>

For tighter, round-trip integration you can also use thucydides-jira-plugin. Thiswill not only include
links to JIRA in the Thucydides reports, but it will also update the corresponding JIRA issues with
links to the corresponding Story page in the Thucydides reports. To set this up, add the thucydides-
jira-plugin dependency to your project dependencies:

<dependency>
<gr oupl d>net . t hucydi des. pl ugi ns. jira</ groupl d>
<artifactld>t hucydi des-jira-plugin</artifactld>
<ver si on>0. 6. 1</ ver si on>
<scope>t est </ scope>

</ dependency>

Y ou also need to provide a username and password to connect to JIRA, and the URL where your
Thucydides reports will be published (for example, on your Cl server). You do using by passing in the
jira.username, jira.password, build.id and hucydides.public.ur| system parameters. The build.id
parameter identifies the current test run, and helps Thucydides know whether a given JIRA issue has
already been updated by another test in the current test run. Thucydideslists all of the tests for agiven
JRA card, along with their results, in the JRA comment, and optionally updates the state of the JRA
issue accordingly (see below).

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>
<ver si on>2. 10</ ver si on>
<confi gurati on>
<ar gLi ne>- Xnx1024nx/ ar gLi ne>
<syst enPr opertyVari abl es>
<jira.url>http://jira.acnme.conx/jira.url>
<jira.username>${jira. denn. user}</jira.usernane>
<jira.password>${jira.denn. password}</jira. password>
<buil d. i d>${env. BU LD_I D} </ bui | d. i d>
<t hucydi des. publ i c. url >http://| ocal host: 9000</ t hucydi des. public. url >
</ syst enPropertyVari abl es>
</ confi guration>
</ pl ugi n>

Thucydides also generates aggregate reports grouping results for stories and features. To include the
JRA linksin these reports as well, you need to set thej i raur | configuration option in the maven-
t hucydi des- pl ugi n, asillustrated here:

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>naven-site-plugin</artifactld>
<ver si on>3. 0- bet a- 3</ ver si on>

72

Using Thucydides tags

<confi gurati on>
<report Pl ugi ns>
<pl ugi n>
<gr oupl d>net . t hucydi des. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-t hucydi des-pl ugi n</artifactld>
<versi on>@r oj ect . ver si on@x/ ver si on>
<confi gurati on>
<jiraUl>http://jira.acne.conx/jiralrl>
</ confi guration>
</ pl ugi n>
</report Pl ugi ns>
</ confi guration>
</ pl ugi n>

If you do not want Thucydides to update the JRA issues for aparticular run (e.g. for testing or
debugging purposes), you can also set t hucydi des. ski p. jira. updat es totrue, e.g.

$ nvn verify -Dthucydi des. skip.jira.updates=true

Y ou can aso configure the plugin to update the status of JIRA issues. Thisis deactivated by default:
to use this option, you need to set thet hucydi des. j i ra. wor kf | ow. act i ve option to ‘true’, e.g.

$ mvn verify -Dthucydides.jira.workflow active=true

The default configuration will work with the default JJIRA workflow: open or in progress issues
associated with successful testswill be resolved, and closed or resolved issues associated with
failing tests will be reopened. If you are using a customized workflow, or want to modify the way
the transitions work, you can write your own workflow configuration. Workflow configuration uses
asimple Groovy DSL. The following is an example of the configuration file used for the default
workflow:

when ' Qpen', {
'success' shoul d: 'Resol ve | ssue

when ' Reopened', {
'success' shoul d: 'Resol ve | ssue

when ' Resol ved', {
"failure' should: 'Reopen |ssue'

when 'In Progress', {
'success' should: ['Stop Progress','Resol ve |ssue']

when ' Cl osed', {
"failure' should: 'Reopen |ssue'

}

Y ou can write your own configuration file and place it on the classpath of your test project (e.g.
in the src/test/resources directory). Then you can override the default configuration by using the
t hucydi des. j i ra. wor kf | ow property in the Maven pom xm file or directly on the command line

eg.

$ nvn verify -Dthucydides.jira.workfl ow=my-workfl ow. gr oovy

73

Using Thucydides tags

Alternatively, you can simply create afile called j i r a- wor kf | ow. gr oovy and place it somewhere
on your classpath. Thucydides will then use this workflow. In both these cases, you don’t need to
explicitly set thet hucydi des. j i ra. wor kf | ow. act i ve property.

Y ou can also integrate JIRA issues into your easyb Thucydides stories. When using the Thucydides
easyb integration, you associate one or more issues with the easyb story as awhole, but not with the
individual scenarios. Y ou do this using the thucydides.tests issue notation:

usi ng "thucydi des"

t hucydi des. uses_default base url "http://ww. wi ki pedi a. cont'
t hucydi des. uses_st eps_from EndUser St eps

t hucydi des. tests_story Sear chByKeyword

t hucydi des. tests_issue "#WKI -2"

scenario "Searching for cats", {

given "the user is on the hone page", {
end_user.is_on_t he_ wi ki pedi a_hone_page()

}

when "the end user searches for 'cats'", {
end_user. | ooks_up_cats()

}

then "they shoul d see the corresponding article", {
end_user.shoul d_see article with title("Cat - WKkipedia, the free encycl opedi
}

}

Y ou can also associate several issues using t hucydi des. t est s_i ssues:

t hucydi des. tests_issue "#WKI-2", "#WKI-3"

To use easyb with Thucydides, you need to add the latest version of t hucydi des- easyb- pl ugi n to
your dependenciesif it is not aready there:

<dependency>
<gr oupl d>net . t hucydi des. easyb</ gr oupl d>
<artifactld>t hucydi des- easyb-pl ugi n</artifactld>
<ver si on>0. 6. 1</ ver si on>
<scope>t est </ scope>

</ dependency>

Aswith JUnit, you will need to pass in the proper parameters to easyb for thisto work. Y ou will
also need to be using the maven-easyb-plugin version 1.4 or higher, configured to passin the JRA
parameters as shown here:

<pl ugi n>
<gr oupl d>or g. easyb</ gr oupl d>
<artifactld>naven-easyb-pl ugi n</artifactld>
<ver si on>1. 4</ ver si on>
<execut i ons>
<execut i on>
<goal s>
<goal >t est </ goal >
</ goal s>
</ execut i on>
</ execut i ons>
<confi gurati on>

74

Using Thucydides tags

<storyType>ht m </ st oryType>

<st oryReport >t ar get/ easyb/ easyb. ht m </ st or yReport >

<easybTestDirectory>src/test/stories</easybTestDirectory>

<paral |l el >t rue</parallel >

<j vmAr gunment s>
<jira.url>http://jira.acme.conx/jira.url >
<jira.username>${jira.denn. user}</jira.usernane>
<jira.password>${jira.denn. password}</jira. password>
<t hucydi des. public.url >http://| ocal host: 9000</t hucydi des. public.url >

</ syst enPropertyVari abl es>

</ j vmAr gunent s>

</ confi guration>
</ pl ugi n>

Once thisis done, Thucydides will update the relevant JIRA issues automatically whenever the tests
are executed.

75

Chapter 16. Managing screenshots

By default, Thucydides saves a screenshot for every step executed during the tests. Thucydides can be
configured to control when screenshots are stored.

16.1. Configuring when screenshots are
taken

The property t hucydi des. t ake. scr eenshot s can be set to configure how often the sreenshots are
taken. This property can take the folowing values:

* FOR_EACH_ACTI ON: Saves a screenshot at every web element action (like click(), typeAndEnter(),
type(), typeAndTab() etc.).

* BEFORE_AND _AFTER EACH STEP : Saves a screeshot before and asfter every step.
* AFTER EACH_STEP : Saves a screenshot after every step

* FOR_FAI LURES : Saves screenshots only for failing steps. This can save disk space and speed up the
testsalittle. It is very useful for data-driven testing.

16.2. Using annotations to control
screenshots

An even more granular level of control is possible using annotations. Y ou can annotate any test or
step method (or any method used by a step or test) with the @cr eenshot s annotation to override the
number of screenshots taken within this step (or sub-step). Some sample uses are shown here:

@t ep
@cr eenshot s(onl yOnFai | ur es=tr ue)
public void screenshots will _only be taken for_failures fromhere on() {.}

@est
@cr eenshot s(f or EachSt ep=t r ue)
public voi d shoul d_take_screenshots_for_each_step_in_this_test() {.}

@est

@cr eenshot s(f or EachAct i on=t r ue)
public void shoul d_take screenshots for_each_action_in_this test() {.}

16.3. Taking screenshots at any arbitrary
point during a step

It is possible to have even finer control on capturing screenshots in the tests. Using the
t akeScr eenshot method, you can instruct Thucydides to take a screenshot at any arbitrary point in
the step irrespective of the screenshot level set using configuration or annotations.

76

Managing screenshots

Simply call Thucydi des. t akeScr eenshot () in the step methods whenever you want a screenshot to
be captured.

16.4. Increasing the size of screenshots

Sometimes the default window size istoo small to display all of the application screen in the
screenshots. Y ou can increase the size of the window Thucydides opens by providing the

t hucydi des. browser . wi dt h and t hucydi des. br owser . hei ght System properties. For example, to
use a browser window with dimensions of 1200x1024, you could do the following:

$ nvn clean verify -Dthucydi des. browser.w dt h=1200 - Dt hucydi des. br owser . hei ght =1024

Typically, the width parameter is the only one you will need to specify, as the height will be
determined by the contents of the browser page.

If you are running Thucydides with JUnit, you can also specify this parameter (and any of the others,
for that matter) directly in your pom.xml file, in the maven-surefire-plugin configuration, e.g:

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>
<versi on>2.7. 1</ versi on>
<confi gurati on>
<ar gLi ne>- Xmx1024nx/ ar gLi ne>
<syst enPr opertyVari abl es>
<t hucydi des. br owser . w dt h>1200</t hucydi des. br owser. wi dt h>
</ syst enPropertyVari abl es>
</ configuration>
</ pl ugi n>

When the browser width is larger than 1000px, the slideshow view in the reports will expand to show
the full screenshots.

Note there are some caveats with this feature. In particular, it will not work at all with Chrome, as
Chrome, by design, does not support window resizing. In addition, since WebDriver uses a real
browser, so the maximum size will be limited by the physical size of the browser. Thislimitation
applies to the browser width, asthe full vertical length of the screen will still be recorded in the
screenshot even if it scrolls beyond a single page.

16.4.1. Screenshots and OutOfMemoryError issues

Selenium needs memory to take screenshots, particularly if the screens are large. If Selenium runs out
of memory when taking screenshots, it will log an error in the test output. In this case, configure the
maven-surefire-plugin to use more memory, as illustrated here:

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>
<versi on>2. 7. 1</ ver si on>

77

Managing screenshots

<confi gurati on>
<ar gLi ne>- Xmx1024nx/ ar gLi ne>
</ confi guration>
</ pl ugi n>

16.5. Saving raw screenshots

Thucydides saves only rescaled screenshots by default. Thisis done to help reduce the disk space
taken by reports. If you require to save the original unscaled screenshots, this default can be easily
overridden by setting the property, t hucydi des. keep. unscal ed. screenshot s tot r ue.

16.6. Saving HTML source files for
screenshots

It is possible to save html source files for the screenshots by setting the property,
t hucydi des. store. ht m . sour ce tot rue. Html source files are not saved by default to conserve

disk space.

16.7. Blurring sensitive screenshots

For security/privacy reasons, it may be required to blur sensitive screenshots in Thucydides reports.
This can be done by annotating the test methods or steps with the annotation @8l ur Scr eenshot s.
When defined on atest, all screenshots for that test will be blurred. When defined on a step, only the
screenshot for that step will be blurred. @BlurredScreenshot takes a string parameter with values

LI GHT, MEDI UMOr HEAVY to indicate the amount of blurring. For example,

@est

@l ur Scr eenshot s(" HEAVY")

public void | ooking up_the definition_of pineapple_shoul d display the corresponding arti
endUser.is_the hone_page();
endUser . | ooks_for (" pi neappl e");
endUser . shoul d_see_definition_containing words("A thorny fruit");

}

A screen at various blur levelsis shown below.

78

i1
{l

R

U

i
g

T

i

I
|

regh Gmrmar | “apte 80d Te sarty Mode Ger—ar wagte
~ ol P Pw was o pre v

Pronunciation [el
o w P pindgm PA [PAINEPSl/ 1 LAMA

/M palni{pi/
* Aol P e O 4l e
Noun el
[eadi i S S

1 A vopas Pt Acecws orwmen ASve 0 Sou
A ca Nawrg Pty o ore Oryg e 8w ported
e RSO T e

2 The ovost Wt of P PRSEpDE PRt et Nas very
reeel atde r pelon et 8 Ougt we Ve el s

gl ‘b core

) (mangd A rard Ferads

A e Ar Aostraiar 'y doler oW
Synonyms
o e waran Dreagee et
o (Pl aeras
* (hard renad yewis e Feais
Dt rved terma
o Ay preappee s Presgoe werd
o prwappee o=t » rmappe by
. preagpe e . U
» prwaggee Forms . regpe e
* preagpe cof * preagpe el
* Presgee [grew . reagpm
* pregpe be preagpe YOe « presgpe pard
. preagpew e . ey et
& PR e s Presgoes Preary
L s] R = e
Reiated worms
. wo.
. prw
Transistions

e

et

g e grenade

B)

. Ay e

. preagpe el

. preagee Ve

* preagpe W setey
. preagpe

. preagpe Fee

* preagpe e
. ey se

* preagpe ere

- teated sreappe

[rgpar cagues o Foum

T page wh e W ey M) W OR AT

-,
—
o,

e & peniatem ol Pw eEee orurd A e e Ails tewe ahrs wew ~ay wety lee e o o

Py iy Ay Watoray acimeey Mobee o

._ """"
e
——

79

80

81

Chapter 17. Managing state between steps

Sometimesit is useful to be able to pass information between steps. For example, you might need to
check that client detailed entered on a registration appears correctly on a confirmation page later on.

Y ou can do this by passing values from one step to another, however this tendsto clutter up the
steps. Another approach is to use the Thucydides test session, which is essentially a hash map where
you can store variables for the duration of a single test. Y ou can obtain this session map using the
Thucydi des. get Current Sessi on() static method.

Asillustrated here, you can p

@t ep

public void notes_publication_name_and_date() {
Publ i cati onDat esPage page = pages().get (Publicati onDat esPage. cl ass);
String publicati onNane = page. get Publ i cati onNane();
Dat eTi me publicati onDate = page. get Publi cati onDate();

Thucydi des. get Current Sessi on() . put (" publ i cati onNanme", publicati onNamne);
Thucydi des. get Current Sessi on() . put (" publicati onbDate", publicationDate);

}

Then, in astep invoked later on in the test, you can check the values stored in the session:

public void checks publication _details on_confirmation_page() {
Confirmati onPage page = pages().get(Confirmati onPage. cl ass);

String sel ect edPublicati onNane = (String) Thucydi des. get Current Sessi on() . get (" publi c
Dat eTi me sel ect edPubl i cati onDate = (DateTi me) Thucydi des. get Current Sessi on() . get (" pu

assert That (page. get Publ i cati onDate(), is(sel ectedPublicationNane));
assert That (page. get Publ i cati onName(), is(sel ectedPublicationDate));

}

If no variable is found with the requested name, the test will fail. The test session is cleared at the start
of each test.

82

Chapter 18. Data-Driven Testing
18.1. Data-Driven Tests in JUnit

In JUnit 4, you can use the Parameterized test runner to perform data-driven tests. In Thucydides, you
use the Thucydi desPar anet eri zedRunner . Thisrunner isvery similar to the JUnit Parameterized
test runner, except that you use the TestData annotation to provide test data, and you can use al of the
other Thucydides annotations (@anaged, @anagedPages, @t eps and so on). Thistest runner will
also generate proper ThucydidesHTML and XML reports for the executed tests.

An example of a data-driven Thucydides test is shown below. In this test, we are checking that valid
ages and favorite colors are accepted by the sign-on page of an (imaginary) application. To test this,
we use several combinations of ages and favorite colors, specified by the testData() method. These
values are represented as instance variables in the test class, and instantiated via the constructor.

@unW t h(Thucydi desPar anet eri zedRunner . cl ass)
public class WhenEnt eri ngPersonal Details {

@est Dat a
public static Collection<Cbject[]> testData() {
return Arrays. asList(new Cbject[][]{

{25, "Red"},
{40, "Blue"},
{36, "Geen"},
1)
}
@managed

public WebDri ver webdriver;

@managedPages(defaul t Ul = "http://ww. myapp. cont')
publ i c Pages pages;

@3t eps
publ i c Si gnupSteps signup;

private |nteger age;
private String favoriteCol or;

publ i ¢ WhenEnt eri ngPer sonal Det ai | s(I nteger age, String favoriteColor) {
thi s. age = age;
this.favoriteCol or = favoriteCol or;

}

@est

public void valid personal details _shoul d be accepted() {
si gnup. navi gat eToPer sonal Det ai | sPage() ;
si gnup. ent er Per sonal Det ai | s(age, favoriteColor);

83

Data-Driven Testing

18.2. Reporting on data-driven web tests

When you generate reporting on data-driven web tests, the reports display full test outcomes and
screenshots for each set of data. An overall story report is displayed for the data-driven test, which a
test case for each row of test data. The test data used for each test is displayed in the report.

18.3. Running data-driven tests in parallel

Data-driven web tests can be long, especially if you need to navigate to a particular page before
testing adifferent field value each time. In most cases, however, thisis necessary, asit is
unsafe to make assumptions about the state of the web page after a previous data-driven test.
One effective way to speed them up, however, isto run them in paralel. You can configure
Thucydi desPar anet eri zedRunner teststo runin parallel by using the Concurrent annotation.

@unW t h(Thucydi desPar anet eri zedRunner . cl ass)
@Concur r ent
public class WhenEnt eri ngPersonal Details {...

By default, thiswill run your tests concurrently, by default using two threads per CPU core. If you
want to fine-tune the number of threads to be used, you can specify the threads annotation property.

@unW t h(Thucydi desPar anet eri zedRunner . cl ass)
@concurrent (threads="4")
public class WhenEnt eri ngPersonal Details {...

Y ou can also express this as a value relative to the number of available processors. For example, to
run 4 threads per CPU, you could specify the following:

@unW t h(Thucydi desPar anet eri zedRunner . cl ass)
@concurrent (t hreads="4x")
public class WhenEnt eri ngPersonal Details {...

18.4. Data-driven testing using CSV files

Thucydides lets you perform data-driven testing using test datain a CSV file. You store your test
datain aCSV file (by default with columns separated by commas), with the first column acting as a
header:

NAME, AGE, PLACE OF BI RTH

Jack Smith, 30, Smithville

Joe Brown, 40, Brownville

Mary Wl liams, 20, WIlliansville

Next, create atest class containing properties that match the columnsin the test data. Each property
should be a property by the JavaBeans definition, with a matching getter and setter. The test class
will typically contain one or more tests that use these properties as parameters to the test step or Page
Object methods.

The class will also contain the @UseT estDataFrom annotation to indicate where to find the CSV file
(this can either be afile on the classpath or arelative or absolute file path - putting the data set on the
classpath (e.g.insrc/ t est/resour ces) makes the tests more portable).

84

Data-Driven Testing

Y ou aso use the @RunWith annotation as well as the other usual Thucydides annotations
(@mnaged, @anagedPages and @t eps).

An example of such aclassis shown here:

@unW t h(Thucydi desPar anet eri zedRunner . cl ass)
@JseTest Dat aFr on{ "t est - dat a/ si npl e- dat a. csv")
public class Sanpl eCSVDat aDri venScenari o {

private String nane;
private String age;
private String placeOBirth;

publ i ¢ Sanpl eCSVDat aDri venScenari o() {
}

@ualifier

public String getQualifier() {
return nane;

}

@managed
public WebDri ver webdriver;

@managedPages(defaul t Ul = "http://ww. googl e. cont")
publ i c Pages pages;

@3t eps

publ i ¢ Sanpl eScenari oSt eps st eps;

@est

public void data driven_test() {
Systemout. println(getName() + "/" + getAge() + "/" + getCity());
}

public String getName() {
return name;

}

public void setName(String nanme) {
t hi s. name = nane;

}

public String getAge() {
return age;

}

public void setAge(String age) {
thi s.age = age;

}

public String getPlaceOBirth() {
return placeOBirt h;

}

public void setPlaceOBirth(String placeOBirth) {
this.placeOBirth = placeOBirth;

}

85

Data-Driven Testing

Y ou can a'so specify multiple file paths separated by path separators — colon, semi-colon or comma.
For example:

@JseTest Dat aFr on{ "t est - dat a/ si npl e- dat a. csv, t est - dat a- subf ol der/ si npl e-dat a. csv"

Y ou can aso configure an arbitrary directory using system property t hucydi des. dat a. di r and then
refer to it as $SDATADI R variable in the annotation.

@JseTest Dat aFr on(" $DATADI R/ si npl e- dat a. csv")

Each row of test data needs to be distinguished in the generated reports. By default, Thucydides will
call thet oSt ri ng() method. If you provide a public method returning a String that is annotated by

the @ual i fi er annotation, then this method will be used to distinguish data sets. It should return a
value that is unique to each data set.

The test runner will create a new instance of this class for each row of datain the CSV file, assigning
the properties with corresponding valuesin the test data. SoWhen we run this test, we will get an
output like this:

Jack Smith/30/Smthville
Joe Brown/ 40/ Brownvill e
Mary WIIiams/20/WIIliansville

There are afew points to note. The columnsin the CSV files are converted to camel-case property
names (so "NAME" becomes nane and "PLACE OF BIRTH" becomespl aceX Bi rt h). Since we are
testing web applications, all of the fields should be strings.

If some of the field values contain commas, you will need to use a different separator. Y ou can use
the separator attribute of the @UseT estDataFrom annotation to specify an alternative separator. For
example, the following data uses a semi-colon separator:

NANE; AGE; ADDRESS

Joe Smith; 30; 10 Main Street, Smithville

Jack Black; 40; 1 Main Street, Smithville

Mary Wl liams, 20, 2 Main Street, Wllianmsville

To run our tests against this data, we would use atest class like the following:

@unW t h(Thucydi desPar anet eri zedRunner . cl ass)
@JseTest Dat aFr on{val ue="t est - dat a/ si npl e- sem col on-dat a. csv", separator=';")
public class Sanpl eCSVDat aDri venScenari o {

private String nane;
private String age;
private String address;

publ i ¢ Sanpl eCSVDat aDri venScenari o() {
}

@ualifier

public String getQualifier() {
return nane;
}

@managed
public WebDri ver webdriver;

@mnagedPages(defaul t Ul = "http://ww. googl e. cont")

86

Data-Driven Testing

publ i c Pages pages;

@5t eps
publ i ¢ Sanpl eScenari oSt eps st eps;

@rest
public void data driven_test() {
Systemout.println(getName() + "/" + getAge() + "/" + getAddress());

}

public String getName() {
return namne;

}

public void setName(String name) {
t hi s. name = nane;

}

public String getAge() {
return age;

}

public void set Age(String age) {
thi s. age = age;

}

public String get Address() {
return address;

}

public void set Address(String address) ({
t hi s. address = address;

}
}

Thiswill generate an output like this:

Joe Snith/30/10 Main Street, Smthville
Jack Bl ack/40/1 Main Street, Smthville
Mary W lians/20/2 Main Street, Wllianmsville

Excel support will be added in afuture version. However if you store your test datain CSV form, it
becomes easier to keep track of changesto test data in your version control system.

18.5. Using data-driven testing for
individual steps

Sometimes you want to use data-driven testing at the step level, rather than at the test level. For
example, you might want to navigate to a particular screen in the application, and then try many
combinations of data, or loop over a sequence of steps with datafrom aCSV file. This avoids having
to reopen the browser for each row of data.

Y ou can do this by adding property values to your Step files. Consider the following stepsfile:

public class Sanpl eDat aDri venSt eps ext ends Scenari oSt eps {

87

Data-Driven Testing

publ i c Sanpl eDat aDri venSt eps(Pages pages) ({
super (pages) ;

}

private String nane;
private String age;
private String address;

public void setName(String name) {
t hi s. name = nane;

}

public void set Age(String age) {
thi s. age = age;

}

public void set Address(String address) ({
t hi s. address = address;

}

@5t epG oup

public void enter_new user_details() {
ent er _name_and_age(name, age);
ent er _addr ess(address);

}

@t ep
public void enter_address(String address) ({

}

@t ep
public void enter_nane_and_age(String name, String age) {

}

@t ep
public void navigate to_user_accounts_page() ({

}
}

Theent er _personal _det ai | s step group uses the step fieldsto run theent er _name_and_age
and ent er _addr ess st eps. We want to fetch this datafrom a CSV file, and loop through the
enter_personal_details step for each row of data.

We do thisusing thewi t hTest Dat aFr on() method of the StepData class:

i mport net.thucydi des. core. annot ati ons. ManagedPages;

i mport net.thucydi des. core. annot ati ons. St eps;

i mport net.thucydi des. core. pages. Pages;

i mport net.thucydi des.junit.annotations. Managed;

i mport net.thucydi des.junit.runners. Thucydi desRunner ;
i mport org.junit. Test;

import org.junit.runner. RunWth;

i mport org.openqga. sel eni um WWebDri ver;

i mport static net.thucydi des. core. steps. StepDat a. wi t hTest Dat aFr om

88

Data-Driven Testing

@unW t h(Thucydi desRunner . cl ass)
public class Sanpl ePassi ngScenari oWt hTest Speci fi cData {

@managed
public WebDriver webdriver;

@mnagedPages(defaul tUrl = "http://ww. googl e. com')
publ i c Pages pages;

@5t eps
publ i ¢ Sanpl eDat aDri venSt eps st eps;

@rest
public void happy_day_scenario() throws Throwabl e {
steps. navigate_to_user_accounts_page();
wi t hTest Dat aFr om("t est - dat a/ si npl e-dat a. csv") . run(steps). enter_new user _|

}

Thiswill call thedat a_driven_test_step() multipletimes, each time injecting data from thet est -
dat a/ si npl e- dat a. csv fileinto the step.

Y ou aso can use as many data files as you want, even in the same test. Y ou can also use the same data
file for more than one test step. Remember only the properties that match columns in the CSV file will
be instantiated - the others will be ignored:

@RunW t h(Thucydi desRunner . cl ass)
public class Sanpl ePassi ngScenari oWt hTest Speci fi cData {

@managed
public WebDriver webdriver;

@managedPages(defaul tUrl = "http://ww. googl e. com")
publ i c Pages pages;

@5t eps
publ i ¢ Sanpl eDat aDri venSt eps st eps;

@5t eps
public DifferentDataDrivenSteps different_ steps;

@est
public void happy_day scenario() throws Throwabl e {
st eps. navi gate_to_user_accounts_page();
wi t hTest Dat aFr om("t est - dat a/ si npl e-dat a. csv") . run(steps). enter_new user |

wi t hTest Dat aFr om("t est - dat a/ some_ot her-dat a. csv").run(different _steps). el

}

By the way we need to use Thucydi desRunner for the test cases instead of
Thucydi desPar anet eri zedRunner .

Note that, as a shortcut, you can dispense with the setter methods and just declare the relevant fields
public. So the Steps class shown above could be rewritten like this:

89

Data-Driven Testing

public class Sanpl eDat aDri venSt eps ext ends Scenari oSteps {

publ i c Sanpl eDat aDri venSt eps(Pages pages) ({
super (pages) ;

}

public String name;
public String age;
public String address;

@5t epG oup

public void enter_new user_details() {
ent er _name_and_age(name, age);
ent er _addr ess(address);

}

@t ep
public void enter_address(String address) ({

}

@t ep
public void enter_nane_and_age(String name, String age) {

}

@t ep
public void navigate to_user_accounts_page() ({

}

90

Chapter 19. Running Thucydides tests in
parallel batches

Web tests make good candidates for concurrent testing, in theory at least, but the implementation can
be tricky. For example, although it is easy enough to configure both JUnit and easyb to run testsin
parallel, running several webdriver instances of Firefox in paralel on the same display, for example,
tends to become unreliable.

The natural solution in this case isto split the web tests into smaller batches, and to run each batch on
adifferent machine and/or on a different virtual display. When each batch has finished, the results can
be retrieved and aggregated into the final test reports.

However splitting tests into batches by hand tends to be tedious and unreliable — it is easy to forget to
add a new test to a batch, for example, or have unevenly-distributed batches.

The latest version of Thucydides lets you do this automatically, by splitting your test

cases evenly into batches of agiven size. In practice, you run abuild job for each batch.

Y ou need to specify two parameters when you run each build: the total number of batches
being run (t hucydi des. bat ch. count), and the number of the batch being run in this build
(t hucydi des. bat ch. nunber).

For example, the following will divide the test casesinto 3 batches (t hucydi des. bat ch. count), and
only run thefirst test in each batch (t hucydi des. bat ch. nunber):

nmvn verify -Dt hucydi des. bat ch. count =3 - Dt hucydi des. bat ch. nunmber =1

Thiswill only work with the JUnit integration. However this feature is also supported in easyb (as of
easyb version 1.5), though using different parameters. When using the Thucydides easyb integration,
you aso need to provide the equivalent options for easyb:

nmvn verify -Deasyb. bat ch. count =3 - Deasyb. bat ch. nunber =1

If you have both easyb and JUnit Thucydides tests, you will need to specify both options.

19.1. Test count based batch strategy

By default, test cases are divided equally among batches. This could be inefficient if some test cases
have more tests than others. In such situations, a different batch strategy, DI VI DE_BY_TEST_COUNT
can be defined using the system property t hucydi des. bat ch. st rat egy. This strategy will evenly
distribute test cases across batches based on number of test methods in each test case.

nmvn verify -Dthucydi des, batch. strategy=Dl VI DE_BY_TEST_COUNT - Dt hucydi des. bat ch. count =3 -

91

Chapter 20. Experimental features

20.1. Integration with FluentLineum

Y ou can use FluentLenium’ s [https:.//github.com/FluentL enium/FluentL enium] fluent API with
Thucydides. The best way to use FluentL enium within Thucydidesis to use ThucydidesFluentAdapter
which is available in PageObject. Here' s an example of the same PageObject written in the traditional
style and with FluentL enium.

i mport ch. | anbdaj . function. convert. Converter

i mport net.thucydi des. core. annot ati ons. Def aul t Ur |
i mport org.openga. sel eni um By;

i mport org.openga. sel eni um Keys;

i mport org.openqga. sel eni um WWebDri ver;

i mport org.openga. sel eni um WWebEl enent ;

i mport org.openqga. sel eni um support . Fi ndBy;

i mport net.thucydi des. core. pages. Pagej ect ;
i mport java.util.List;
i mport static ch.lanbdaj.Lanbda. convert;

@efaultUl ("http://en.w ktionary. org/w ki/W ktionary: Mai n_Page")
public class DictionaryPage extends Page(bject {

@i ndBy(nane="sear ch")
private WebEl enent searchTer ns;

@i ndBy(nane="go")
private WebEl enent | ookupButton

public DictionaryPage(WebDriver driver) {
super (driver);
}

public void enter_keywords(String keyword) {
el ement (searchTerns) . t ype(keywor d) ;
}

public void | ookup ternms() {
el ement (| ookupButton).click();
}

public List getDefinitions() {
WebEl ement definitionList = getDriver().findEl enent (By.tagNane("ol"));
List results = definitionList.findEl ements(By.tagNanme("li"));
return convert(results, toStrings());

}

private Converter<WbEl enment, String> toStrings() {
return new Converter<WebEl enent, String>() {
public String convert (WebEl enent fron) ({
return from get Text ();
}

}s

92

https://github.com/FluentLenium/FluentLenium
https://github.com/FluentLenium/FluentLenium

Experimental features

}
and with FluentLineum

i mport ch. | anbdaj . function. convert. Converter

i mport net.thucydi des. core. annot ati ons. Def aul t Ur|
i mport net.thucydi des. core. pages. PageObj ect ;

i mport org.fluentlenium core.domain. Fl uent Li st ;

i mport org.openga. sel eni um By;

i mport org.openga. sel eni um WebDri ver;

i mport org.openga. sel eni um WebEl enent ;

i mport org.openqga. sel eni um support . Fi ndBy;

i mport java.util.List;

i mport static ch.l|anbdaj.Lanbda. convert;
import static org.fluentleniumcore.filter.FilterConstructor.w t hNane;

@efaul tUl ("http://en.w ktionary. org/w ki /W ktionary: Mai n_Page")
public class FluentDi ctionaryPage extends PageObject {

publ i c Fluent Di cti onaryPage(WebDriver driver) {

super (driver);
}

public void enter_keywords(String keyword) {
fluent().fill("input", w thName("search")).w th(keyword);
}

public void | ookup_terms() {
fluent().click("input", w thNane("go"));

}

public List getDefinitions() {
FluentList results = fluent().findFirst("ol").find("Ii");
return results. get Texts();

}

20.2. Shortcut for the element() method

Another new experimental feature introduces the ability to replace the commonly-used element()
method with *$', asillustrated in the following examples:

@i ndBy(nane="sear ch")
private WebEl enent searchTer ns;

@i ndBy(nane="go")
private WebEl enent | ookupButton

public DictionaryPage(WebDriver driver) {
super (driver);
}

public void enter_keywords(String keyword) {

93

Experimental features

$(searchTerns).type(keyword);
}

public void | ookup_terms() {
$(1 ookupButton).click();
}

public void click _on_article(int articleNunber) {
$("//section[@d="'searchResults']/article[" + articleNunmber + "]//a").click();
}

public String getHeadi ng() {
return $("secti on>hl1l"). get Text ()
}

}

20.3. Retrying failed tests

Sometimes it isrequired to retry afailed test. This can be achieved by setting the system property
max. ret ri es to the number of times you want failed teststo be retried.

20.4. Using Step methods to document
test cases

Methods in the Step library can be used to provide additional documentation for the test scenariosin
Thucydides reports. Y ou can pass valid HTML text as parameter to @Step methods in the step library.
Thiswill show up as formatted text in the reports on the step details page. The following screenshot
demonstrates this.

94

Experimental features

Figure20.1. HTML formatted text, if passed to a step method will be displayed
as shown. This can be useful for annotating or documenting the testswith
helpful information.

¥ thucydides

Home > Looking up the definition of mango should display the corresponding article blurred

Q-S4 ESTCl Requirements Progress Features Stories History

© (Lookfn_c,)r up the definition of mango should display the corresponding article blurred 35.55¢
#WIKI-1

Search (feature) Search by keyword (story)

Steps Screenshot Qutcome Duration

Denatpsien—t
Searching for a fruit on Wiktionary should display
@ the result page

SUCCESS 0.02s
+ Fruit can be any common fruit
+ Normally a picture is also displayed but we are not testing for it at the
moment.
f i

() 1s the home page SUCCESS 18.48s
:d,,b: Looks for: {mango} SUCCESS 15.91s
@ Should see definition containing words: {Mangifera indica} ; = SUCCESS 1.06s

Thisis achieved by creating adummy @Step method called description that takes a String parameter.
At runtime, the tests supply this method with formatted html text as parameter.

@t ep

public void description(String htm) {
/1 do not hi ng

}

public void about(String description, String...remarks) {
String htm =
"<h2 style=\"font-style:italic;color:black\">" + description + "</h2>" +
"<di v><p>Remar ks: </ p>" +

"<ul style=\"margin-left:5% font-weight:200; col or:#434343; font-size: 10px;\">";
for (String li : remarks) htm += "" + i + "</|i>";

htm += "</di v>";

description(htm);

95

Chapter 21. Further Reading

Articles

» Dr. Dobb’s Journal. Project of the Month: Thucydides [http://drdobbs.com/open-
source/232300277/], December. 2011.

» JavaWorld. Acceptance test driven development for web applications [http://www.javaworld.com/
javaworld/jw-08-2011/110823-atdd-for-web-apps.html], August. 2011.

» JavaWorld. Selenium 2 and Thucydides for ATDD [http://www.javaworld.com/javaworld/
jw-10-2011/111018-thucydides-for-atdd.html], August. 2011.

Books

* BddinAction, BDD In Action - Manning - Summer, 2014 [http://manning.com/smart]

96

http://drdobbs.com/open-source/232300277/
http://drdobbs.com/open-source/232300277/
http://drdobbs.com/open-source/232300277/
http://www.javaworld.com/javaworld/jw-08-2011/110823-atdd-for-web-apps.html
http://www.javaworld.com/javaworld/jw-08-2011/110823-atdd-for-web-apps.html
http://www.javaworld.com/javaworld/jw-08-2011/110823-atdd-for-web-apps.html
http://www.javaworld.com/javaworld/jw-10-2011/111018-thucydides-for-atdd.html
http://www.javaworld.com/javaworld/jw-10-2011/111018-thucydides-for-atdd.html
http://www.javaworld.com/javaworld/jw-10-2011/111018-thucydides-for-atdd.html
http://manning.com/smart
http://manning.com/smart

	The Thucydides Reference Manual
	Table of Contents
	Copyright
	Chapter 1. Introducing Thucydides
	Chapter 2. Basic concepts of Acceptance and Regression Testing
	Chapter 3. Getting started with Thucydides
	3.1. Creating a new Thucydides project
	3.2. Setting custom web driver capabilities

	Chapter 4. Writing Acceptance Tests with Thucydides
	4.1. Organizing your requirements

	Chapter 5. Defining high-level tests
	5.1. Defining high-level tests in easyb
	5.1.1. Writing a pending easyb story
	5.1.2. Implementing the easyb stories

	5.2. Defining high-level tests in JUnit
	5.2.1. Pending tests
	Junit assumptions

	5.2.2. Running tests in a single browser session

	5.3. Adding tags to test cases
	5.3.1. Adding tags to junit tests
	5.3.2. Adding tags to easyb tests
	5.3.3. Filter tests by tags in jUnit

	5.4. Running Thucydides in different browsers
	5.4.1. Chrome switches

	5.5. Forcing the use of a particular driver in a test case or test

	Chapter 6. Writing Acceptance Tests with JBehave
	6.1. JBehave and Thucydides
	6.2. Working with JBehave and Thucydides
	6.3. Setting up your project and organizing your directory structure
	6.3.1. The JUnit test runner
	6.3.2. Organizing your requirements
	Narrative in asciidoc format

	6.3.3. Customizing the requirements module
	6.3.4. Story meta-data
	6.3.5. Implementing the tests

	6.4. JBehave Maven Archetype
	6.5. Running all tests in a single browser window

	Chapter 7. Implementing Step Libraries
	7.1. Creating Step Libraries

	Chapter 8. Defining Page Objects
	8.1. Using pages in a step library
	8.2. Opening the page
	8.3. Working with web elements
	8.3.1. Checking whether elements are visible
	8.3.2. Checking whether elements are enabled
	8.3.3. Manipulating select lists
	8.3.4. Determining focus
	8.3.5. Using WebElementFacade variables directly
	8.3.6. Using direct XPath and CSS selectors

	8.4. Working with Asynchronous Pages
	8.4.1. Checking whether an element is visible

	8.5. Executing Javascript
	8.6. Uploading files
	8.7. Using Fluent Matcher expressions
	8.7.1. Working with HTML Tables

	8.8. Running several steps using the same page object
	8.9. Switching to another page

	Chapter 9. Advanced JIRA Integration
	9.1. JIRA Integration plugins
	9.2. Reporting on versions
	9.3. Using JIRA versions
	9.4. Retrieving manual test results from Zephyr

	Chapter 10. Spring Integration
	Chapter 11. Thucydides Report Configuration
	Chapter 12. Converting existing xUnit, specFlow and Lettuce test cases into Thucydides report
	Chapter 13. Running Thucydides tests from the command line
	13.1. Providing your own Firefox profile

	Chapter 14. Integrating with issue tracking systems
	14.1. Basic issue tracking integration

	Chapter 15. Using Thucydides tags
	15.1. Writing a Thucydides tags plugin
	15.2. Bi-directional JIRA integration

	Chapter 16. Managing screenshots
	16.1. Configuring when screenshots are taken
	16.2. Using annotations to control screenshots
	16.3. Taking screenshots at any arbitrary point during a step
	16.4. Increasing the size of screenshots
	16.4.1. Screenshots and OutOfMemoryError issues

	16.5. Saving raw screenshots
	16.6. Saving HTML source files for screenshots
	16.7. Blurring sensitive screenshots

	Chapter 17. Managing state between steps
	Chapter 18. Data-Driven Testing
	18.1. Data-Driven Tests in JUnit
	18.2. Reporting on data-driven web tests
	18.3. Running data-driven tests in parallel
	18.4. Data-driven testing using CSV files
	18.5. Using data-driven testing for individual steps

	Chapter 19. Running Thucydides tests in parallel batches
	19.1. Test count based batch strategy

	Chapter 20. Experimental features
	20.1. Integration with FluentLineum
	20.2. Shortcut for the element() method
	20.3. Retrying failed tests
	20.4. Using Step methods to document test cases

	Chapter 21. Further Reading

